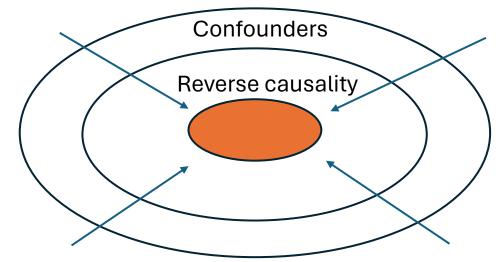
Discussion of "The Lasting Impact of Historical Residential Security Maps on Experienced Segregation" by Aaronson, Han, Hartley, Mazumder

ABFER, May 2024

Jiro Yoshida


Pennsylvania State University and University of Tokyo

Paper Summary

- Findings
 - Redlining in the 1930s still has a persistent effect on residents' trip pattern beyond income effects
- Theme
 - "experienced segregation" Path dependency created by a "wrong" policy
- History meets big data
 - The "redlining map" of 1930s (HOLC map)
 - Cell phone records of visits from Safegraph
- Identification strategy
 - Census blocks on different sides of idiosyncratic redlining boundaries

General Comments

- Excellent writing
- No serious econometric problem to point out
- Very careful identification

• "Redlining" has created segregation in the orange subset.

Comment 1: Identification vs aggregate effects

Destination CD

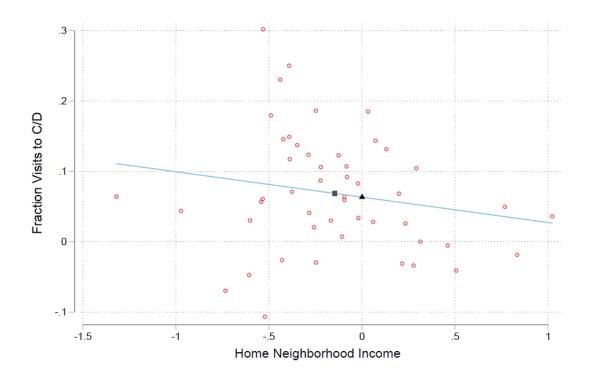
Boundary	Idiosyncratic Boundaries (low propensity score)	Boundaries based on Characteristic
АВ	?	?
ВС	Main	Tab 2
CD	Tab 7	?

Destination AB

Boundary	Idiosyncratic Boundaries (low propensity score)	Boundaries based on Characteristic
AB	?	?
ВС	Tab 2	Tab 2
CD	?	?

Additional dimensions in

- Destination: income, college, race (Tab 3)
- Proximity (Tab 4)
- Visit type: work, non-work, weekend (Tab 5)

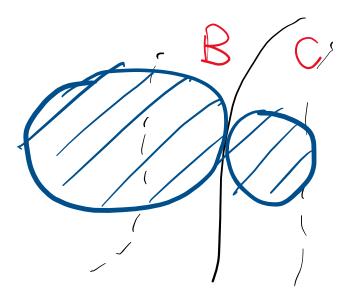

Can you extrapolate the results to estimate the aggregate effect?

Comment 2: Income

 My immediate questions – addressed in Section 3.4

Figure 1: Boundary Differences in Visit Patterns

(a) C-B Boundaries: Fraction Visits to C/D



 Are income effects insignificant in other segments?

Boundary/Area	Income
Α	?
AB	?
В	?
ВС	Tab 7
С	?
CD	?
D	?

- Can you estimate income effects for AB and CD and within A, B, C, D?
- Are they small in other segments?

Comment 3: Map of example boundaries

B

- Area Size
- Geographical distribution
- Roads
- Hills
- Rivers

Even withing ¼ mile, there may be dividing factors despite similar PS

- Roads
- Bus routs
- River

Comment 4: City-level impacts

- Identification is based on the difference between
 - Population $\in [30k, 40k]$
 - Population $\in (40k, 50k]$
- This difference may be due to redlining but may also be due to population size
- Can you test discontinuity in level or slope at the "40k boundary" to see if 40k is special?

Conclusion

- Very nice paper with clean identification
- Nice to show that red lining has created hysteresis in resident trips
- A trade-off is that the identified effect is for a narrow segment of the economy
- The overall effect of the program is estimated by the 40k population threshold but I'd rather want to see "dirty" estimates for the omitted segments of the economy