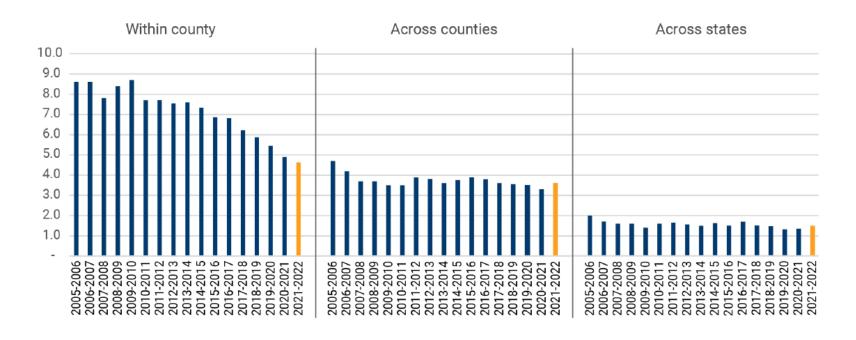
Gone with the Flood: Natural Disasters, Selective Migration, and Media Sentiment

Yi Fan, Qiuxia Gao, Yinghao Elliot Sitoh, and Wayne Xinwei Wan

Discussant: Liu Ee Chia
NUS Institute of Real Estate and Urban Studies
The Pennsylvania State University

ABFER May 2024

Paper Summary

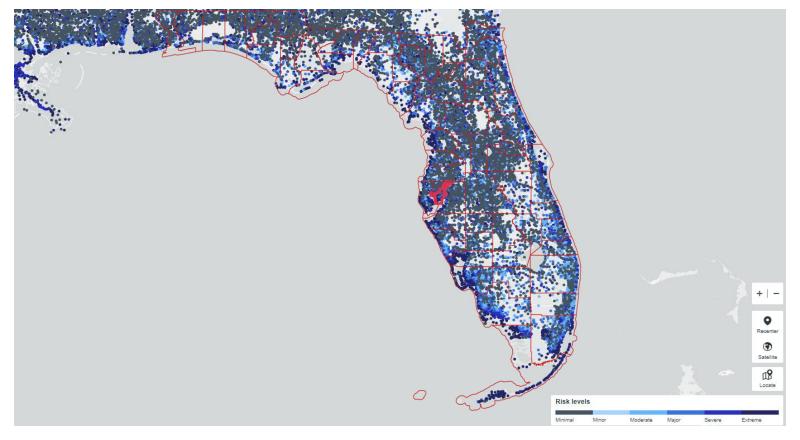

 This paper examines the effects of flood events on inflow and outflow migration.

Inflow migration and outflow migration increase by 1.9% and 2.7% respectively.

• These migrations lead to a 5.3% decrease in housing prices and a 7.4% increase in housing rent post-flood.

Comment #1 County-level analysis may be less appropriate

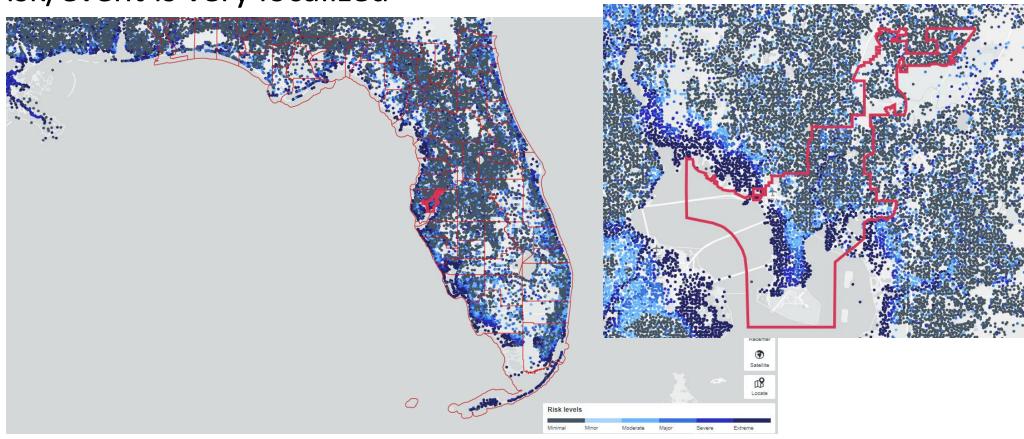
(1) Most migrations in the US are within-county migrations



Migration rates by type of move, 2005 to 2022

Source: First Street Foundation and US Census Bureau Current Population Survey

Comment #1 County-level analysis may be less appropriate

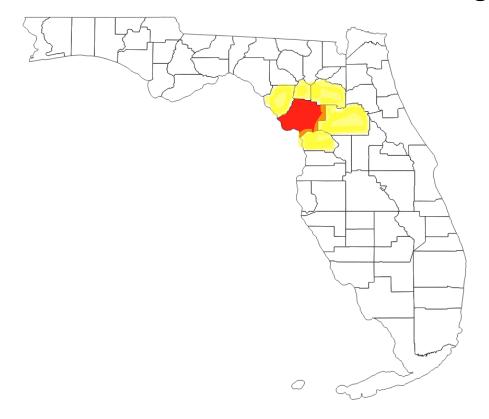

(2) Flood risk/event is very localized

Source: Tiger Shapefile, riskfactor.com

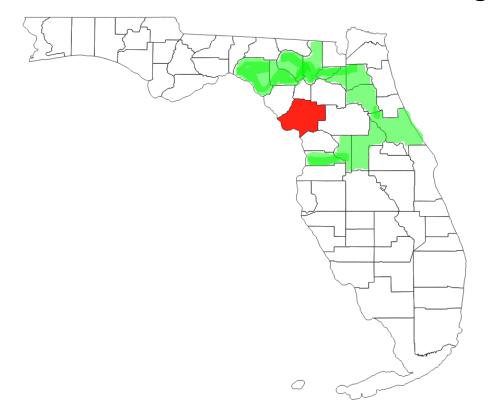
Comment #1 County-level analysis may be less appropriate

(2) Flood risk/event is very localized

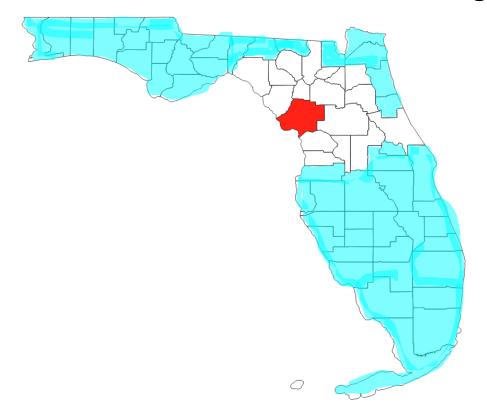
Tampa, FL


Source: Tiger Shapefile, riskfactor.com

Comment #1 County-level analysis may be too coarse


- Use micro-level data to study this research question:
 - Individual-level Migration data: Equifax (mortgage borrowers) or Infutor (Both renters & homeowners)
 - Micro-level flood events data: FEMA National Flood Insurance Program (NFIP) Redacted Claims (lat/lon, census tract, zip code)
 - Property-level flood risk data: National flood hazard map or First Street Flood Risk
 - Identify short-term migration
- Study migrant demographics education/employment/age + income/race/household size
- Study long-term effects on changes in economic and demographic makeup

- Control group = Surrounding counties within the twelve nearest nonflooded counties
 - Show a figure of treated county and the surrounding control counties
- Issue: Flood-induced migration to/from neighbouring counties?
 - Show that results are robust across various control groups


- Issue: Flood-induced migration to/from neighbouring counties?
 - Show that results are robust across various control groups

- Issue: Flood-induced migration to/from neighbouring counties?
 - Show that results are robust across various control groups

- Issue: Flood-induced migration to/from neighbouring counties?
 - Show that results are robust across various control groups

Comment #3 Type of Flood Events

- 2218 flood events between 2006-2019 in 360 counties:
 - Heterogeneity by flood severity and frequency
 - Heterogeneity by FEMA individual assistance/disaster mitigation grants/infrastructure investments
 - Media/news sentiment vs Physical improvements in amenities/infrastructure
 - House price and # of firm exits/entries may be bad controls (replace Table 2 with Appendix A4)

Comment #4 Alternative channels may affect housing prices and rents

- 5.3% decrease in housing prices post-flood
 - Alternative channels: Physical damage from flood, Future flood risk
- 7.4% increase in housing rent post-flood
 - Alternative channels: Flood destroys available housing stock for rent, post-disaster investments on infrastructure
- Use micro-level data to partially disentangle the channels (dynamic DID)
 - Short/Long-term effects on houses directly affected by floods
 - Short/Long-term effects on houses adjacent to damaged areas and with high flood risks
 - Short/Long-term effects on houses adjacent to damaged areas and with low flood risks

Other Minor Comments - Empirical Specification

- 1) Stacked Difference-in-differences
 - 1. For each flood event j, create a subsample by compiling all observations from the treated and (clean) control groups within the sample window, assign a cohort ID j for each subsample
 - 2. Stack all J subsamples from J flood events to generate a final sample
 - 3. Run Stacked DID:

$$Y_{i,t} = \frac{\beta_{+} Treat_{i,j,t} + \beta_{2} Post_{i,j,t} + \beta_{3} Treat_{i,j,t} \times Post_{i,j,t} + X'_{i,t} \lambda + \frac{\omega_{i} \omega_{i,j}}{\omega_{i,j}} + \frac{\theta_{t}}{\omega_{s,t}} + \frac{\omega_{t} \omega_{i,j}}{\omega_{s,j,t}} + \frac{\omega_{t} \omega_{i,j}}{\omega_{s,j,t}} + \frac{\omega_{t} \omega_{i,j}}{\omega_{s,j,t}} + \frac{\omega_{t} \omega_{i,j}}{\omega_{s,j,t}} + \frac{\omega_{t} \omega_{s,t}}{\omega_{s,t}} + \frac{\omega_{t}$$

Other Minor Comments

- 2) Discussion on longer-term effect seems abstract
 - Examine long-term effects based on a longer window
 - +5, +10 etc.
- 3) Confounders by other types of disasters (wildfire)
 - Remove areas that frequently experience other types of disasters
- 4) Migration is a method of adapting to climate change
 - How migration can help the government save money by reducing the need for providing insurance and assistance for post-disaster recovery?

Overall

- A paper that focuses on a very timely topic
- Very well-structured and well-written
- Has great potential!