Investments that Make our Homes Greener: The Role of Regulation

Nuno Clara¹, João F. Cocco², S. Lakshmi Naaraayanan², Varun Sharma³

¹Duke University ²London Business School ³Indiana University

May 2024

ABFER 2024, Singapore

Motivation

- The operation of residential buildings (our homes) is responsible for roughly 22% of the global energy consumption and 17% of the CO₂ emissions.
- Investments to improve energy efficiency and environmental performance can make a significant contribution to the climate challenge.
- However, such investment levels have been low and has led to government interventions (subsidies and regulations).

Motivation

- Energy efficiency regulations
 - \rightarrow Improve energy performance of the worst-performing buildings
 - Targeted private rental sectors: Presumes that investment inefficiencies are more pervasive and yield sub-optimal levels of private investment (private energy-efficiency gap)
 - → Reduce carbon emissions, which in presence of energy use externalities are socially excessive (social energy-efficiency gap)
 - \rightarrow A Pigouvian tax would internalize such externalities, but was not followed, presumably because it lacked political support
- As a result, energy efficiency regulations have multiple confounding objectives, and take a second-best approach to address externalities

This Paper

- Regulatory context: Domestic Minimum Energy Efficiency Standard (MEES)
 - ightarrow Minimum energy efficiency threshold that new private rentals must satisfy
 - ightarrow Assumes that investment inefficiencies in private rental sector are more pervasive
 - ightarrow Approved March 2015, Implemented April 2018
- What we do:
 - \rightarrow Energy Performance Certificates (EPC) for residential properties in England and Wales
 - ightarrow Focus on the existing properties, instead of the construction sector (new builds)
 - 1. Evaluate the investment efficiencies rationale for regulation to apply to the private rental sector
 - 2. Examine whether regulations trigger investments in the rental private sector
 - 3. Investigate the drivers of investments in energy and environmental efficiency
 - 4. Examine whether investments are capitalized into rents and compensate for the additional capex
 - 5. Characterize the role of regulations in reducing carbon emissions.

Preview of results

- Energy efficiency of the housing stock
 - \rightarrow Private rental properties are more energy efficient (on average and in the left tail).
 - \rightarrow Rental sector has larger proportion of flats (fewer external walls).
 - \rightarrow 21.6% (19%) of the private rental (owner-occupied) flats are in the bottom one-third of the overall energy efficiency distribution.
- Role of regulation in affecting investments in energy efficiency
 - ightarrow In lower-rated properties and in retrofits that lead to larger efficiency gains.
 - ightarrow Concentrate on elements that require lower capital expenditures and have higher IRR.
 - → Investments lead to economically small increases in rents which are not large enough to compensate for the additional investment.
- Examine concomitant change in environmental performance
 - \rightarrow Large improvements in energy efficiency in the rental sector were not accompanied by similarly large improvements in environmental performance.
 - → Energy efficiency is a cost measure whereas environmental performance depends on carbon factors of the fuel source.

Related Literature

- Large literature on energy efficiency in commercial properties (e.g. Eichholtz, Kok, and Quigley 2010, Jaffee, Stanton, and Wallace 2019).
- Nascent literature that aims to understand residential energy efficiency programs:
 - → Low participation in programs that subsidize investments, even though they have positive private returns (Fowlie, Greenstone, and Wolfram 2015, Fowlie, Greenstone, and Wolfram 2018).
 - \rightarrow Ex-ante projections on energy savings (Allcott and Greenstone 2017, Christensen et al. 2020, Berkouwer and Dean 2022).
- Impact of climate risk on:
 - → The value of real estate assets (Bernstein, Gustafson, and Lewis 2019, Ortega and Taspinar 2018, Murfin and Spiegel 2020, Giglio et al. 2021)
 - ightarrow The mortgages used (Issler et al. 2020, Gete and Tsouderou 2021).
- Papers that use the same data:
 - $\rightarrow\,$ Fuerst et al. 2015 studies the relation between home prices and energy efficiency using hedonic price regressions

INSTITUTIONAL BACKGROUND AND DATA

Energy performance certificates

- The Energy Performance of Buildings Directive (2002/91/EC) is an EU Directive on the energy performance of buildings
 - ightarrow Tackle climate change by reducing the amount of carbon produced by buildings
 - \rightarrow Measurement of the efficiency of homes through EPCs.
- In England and Wales, a valid certificate is required to sell or rent out a property since 2008; valid for 10 years and costs about £60-£120
- An accredited assessor carries out a physical inspection of the property (assessor sheet) and inputs findings into a government-approved software
- Certificates provide:
 - \rightarrow a measure of overall energy efficiency of the property (1-100)
 - \rightarrow the quality of the elements (such as walls, main heating), star ratings (from 1 to 5)
 - ightarrow recommendations on how to improve energy efficiency (indicative capex and savings)
 - $\rightarrow\,$ measures of the environmental impact of the property (the carbon emissions from the operation of the property).

Energy efficiency rating: SAP points and letter rating

Efficiency	SAP points	Rating
Most efficient	92 plus	А
	81-91	В
	69-80	С
	55-68	D
	39-54	Е
	21-38	F
Least efficient	1-20	G

Sample construction: number of certificates per property

Summary: Full sample and multiple certificates

Number of certificates	Number of properties
1	10,852,861
2	2,669,986
3	387,355
4	65,729
5	12,383
6	2,609
7	627
8	147
9	42
10	9
11	7
12 and above	2
Total	13,991,759

Distributions of energy efficiency

Second certificates are observed for initially lower-rated properties

Single Certificate Properties

- Over the years there have been seven amendments and additions to the RdSAP conventions (and software) used to perform the calculations
- Are the changes in energy score for the same property due changes in the procedure or in the underlying characteristics of the property?
- We construct an empirical regression model for energy efficiency score as a function of the star rating of its elements [Empirical model]

• Summary of results:

- ightarrow Estimated coefficients stable across periods, except for main heating (Estimates
- ightarrow Estimated coefficients are increasing in star rating with few exceptions
- ightarrow Importance of elements, SAP points increase per one additional star rating
 - Main heating (5.1), hot water (3.5), walls (3.1), Main heat controls (2.4), roof(2.3), windows (2.2), and lighting (0.6)
- ightarrow Considerable variation in coefficients by built form, flats versus houses
- → Changes in property characteristics more important than changes in assessment procedures

 Decomposition

Characterising retrofits using multiple certificate properties

Importance of the initial level of efficiency for investments

Group	Number obs.	Initial points	Δ Points	Perc. change				
Panel A: Cut-offs defined using first certificate of multiple certificate properties								
1. Lowest efficiency 2.	1,276,916 1,234,062	40.62 60.79	13.54 1.35	33.3% 2.2 %				
3. Highest efficiency 1,198,818 73.37 -3.42 -4.7% Panel B: Cut-offs defined using the full sample								
 Lowest efficiency . Highest efficiency 	1,642,758 1,088,619 978,414	44.17 63.57 74.69	11.25 0.14 -3.86	25.5% 0.2% -5.2%				

REGULATORY INTERVENTION AND INVESTMENTS

Minimum Energy Efficiency Standard (MEES)

- The Minimum Energy Efficiency Standard (MEES) introduced minimum standards for energy efficiency aiming to:
 - \rightarrow improve energy performance of the worst-performing buildings
 - → reduce carbon emissions, which in presence of energy use externalities are socially excessive (social energy efficiency gap)
- Minimum level of energy efficiency (SAP points equal to 39) that privately rented residential properties must satisfy
- Approved by the Parliament on 26 March 2015 and enforced on the 1 April 2018
- Sample composition
 - → In England and Wales, in 2010, of the 24.2 million dwellings that formed the housing stock: 66% owner-occupied, 17% private rental, and 18% social rental
 - → In our full sample of 17.7 million certificates: 56% owner-occupied, 23% private rental, and 19% social rental Unobserved investments

The role of housing tenure

- Does tenure affect the magnitude and nature of the investments undertaken?
 - \rightarrow In perfect markets:
 - Property and rental prices reflect the value of savings associated with energy efficiency retrofits
 - Investments with positive NPV are undertaken, irrespective of tenure (owner-occupied or rented out)
 - \rightarrow In reality:
 - Information asymmetries and financing frictions affect the investments undertaken
 - Certain property owners (or tenants) may value the energy efficiency features of homes beyond their financial benefits
- Thus, one of the main arguments for introducing the MEES is that investment inefficiencies in the private rental sector imply that the level of investments carried out by landlords is sub-optimal.

Energy efficiency distributions by tenure

All certificates issued before April 1, 2015

Owner-occupied Private rental

(a) All properties

Owner-occupied Private rental

(b) Flats and maisonettes

REGULATORY INTERVENTION AND INVESTMENTS

Distributions of energy efficiency score for selected calendar years

Distributions of energy efficiency score for selected calendar years

Change in energy efficiency score over time

Two series diverge with significantly larger improvements in the private rental sector

Initial characteristics and retrofits by tenure and time period

Proportion of properties (multiple certificates in bottom tercile) for each characteristic

		Owner-occupied			Private rental				
		Pre Ap	or/15	Post A	pr/15 Pre Apr/15		r/15	5 Post Apr/	
Element	Description	Initial	Δ	Initial	Δ	Initial	Δ	Initial	Δ
Mainheat	Boiler and radiators, mains gas	63	13	61	13	56	14	45	13
	Electric storage or room heaters, oil heating	25	-8	28	-9	33	-9	44	-8
Mainheat controls	Programmer, room thermostat and TRVs	19	26	21	38	13	21	13	27
Windows	Fully double glazed	56	17	60	21	52	17	56	18
Roof	Pitched, insulation \geq 270 mm	3	6	4	12	2	5	3	10
	Pitched, insulation \geq 200 mm	14	22	17	20	10	14	11	18
Lighting	Low energy lighting \geq 80% of fixed outlets	8	8	11	33	11	13	16	38
Walls	Cavity, insulated	14	10	14	13	8	5	8	7
	Solid brick, insulated	1	1	1	2	1	2	1	2
Hot water	From main system	51	26	52	30	45	24	40	23
	From main system, no cylinder thermostat	21	-12	21	-11	16	-8	13	-4
	Electric immersion	22	-11	22	-12	31	-13	37	-12

Similar investments in rental private and owner-occupied sectors. Why?

(Indicative) Capital expenditures and savings

Concentrate on elements that require lower capex and generate significant IRRs

	Capex (£)	Savings (£)	PV sav/Capex		IRR (%)	Lifespan (years)	
Discount rate values			3%	2%	1%		
Install low energy lighting	38	30	7.3	7.7	8.2	80.7	10
Upgrade heating controls	400	58	1.3	1.4	1.5	9.1	10
Install hot water cylinder thermostat	300	61	1.9	2.0	2.1	17.3	10
Increase loft insulation to 270mm	225	83	9.4	10.8	12.7	38.9	30
Change heating to gas condensing boiler	5,000	360	0.7	0.7	0.7	-4.0	10
Replace single with double glazing windows	4,851	56	0.2	0.2	0.3	-9.5	20
Cavity wall insulation	1,000	148	3.8	4.4	5.1	16.5	30
50 mm internal or external wall insulation	9,000	197	0.6	0.6	0.8	-0.7	30

Type/Size

Compliance cost

Capital expenditures

Quick summary

- Regulatory intervention led to significant improvements in the private rental sector.
- However, we find similar investments among owner-occupied and renters.
- Concentrate on elements requiring lower capex and that generate significant IRRs.
- Do landlords who make energy efficient investments capitalize them into higher rents?

Impact on rents

Economically small increase in rents

Dependent variable	Log(price)						
	Α	Il certificates	3	Во	ttom tercil	e	
	(1)	(2)	(3)	(4)	(5)	(6)	
$1_{Points \geq 39}$	0.025*** (0.003)	0.055*** (0.003)	-0.007*** (0.002)	0.036*** (0.005)	0.033*** (0.004)	-0.006 (0.006)	
$\mathbb{1}_{Post-Approval} \times \mathbb{1}_{Points \geq 39}$	0.046*** (0.004)	0.045*** (0.003)	0.014*** (0.002)	0.050*** (0.005)	0.030*** (0.005)	0.010*** (0.003)	
Fixed effects:							
Year	Yes	Yes	Yes	Yes	Yes	Yes	
Property characteristics	No	Yes	No	No	Yes	No	
Property	No	No	Yes	No	No	Yes	
R^2	0.06	0.26	0.91	0.05	0.27	0.90	
Observations	5,960,456	5,960,456	5,960,456	323,691	323,691	323,691	

Merge

Increase in rents vs. capital expenditures

Increase in rents not large enough to compensate additional capital expenditures

	Option 1	Option 2	Option 3			
	Panel A: In	crease in point	s achieved through capex			
Mainheat	13.92	-	-			
Low energy lighting	-	2.37	2.37			
Mainheat controls	-	7.41	7.41			
Windows	-	4.20	-			
Total points	$\overline{13.92}$	$\overline{13.98}$	$\overline{9.78}$			
		Panel B: Ca	oex required			
Mainheat	£5,000	-	-			
Low energy lighting	-	£38	£38			
Mainheat controls	-	£400	£400			
Windows	-	£4,851	-			
Total capex	$\pounds 5,000$	$\pounds 5,289$	$\overline{\pounds 438}$			
		Panel C: Net Present Value				
Discount rate of 3%	-£4,275.0	-£2,467.5	£287.0			
Discount rate of 2%	-£4,235.3	-£2,305.9	£326.7			
Discount rate of 1%	-£4,192.4	-£2,138.0	£369.6			

ENERGY EFFICIENCY \longrightarrow CARBON EMISSIONS

From energy efficiency to carbon emissions

- The carbon emissions of homes depend on the quantity of energy consumed and how polluting the type of fuel used
- The focus of the certificates and of the regulatory framework is on energy efficiency and not on carbon emissions
- To what extent does the focus on energy consumption lead to smaller improvements in carbon emissions than what might be otherwise achievable?
- Environmental impact rating:
 - $\rightarrow\,$ Measures the property's impact on the environment in terms of carbon dioxide (CO_2) emissions
 - \rightarrow Scale of 1 to 100, the higher the rating the lower the CO₂ emissions
 - $\rightarrow~$ Improving energy efficiency is positive for the environment

Change in energy efficiency and environmental impact over time

Energy sources and CO₂ emissions

- Improvements in energy efficiency (lower energy costs)
 - ightarrow Reductions in the use of an expensive but low carbon footprint energy source
 - Improves energy efficiency without a large effect on carbon emissions
 - $\rightarrow~$ Shift towards cheaper but more polluting energy sources
 - Reduces energy costs (and improves energy efficiency) but may lead to larger carbon footprints
- How polluting an energy source depends on how it is produced
 - ightarrow If electricity is produced using coal, its carbon emissions are large
 - → If electricity is produced using renewable sources such as wind and sun, then its environmental impact will be significantly smaller and "indirect" only

What explains the divergence?

Energy costs, fuel sources, and CO₂ emissions

Shifts in main fuel energy source from electricity to gas

Energy sources	Initial (%)	Final (%)	Δ (%)	Initial (%)	Final (%)	Δ (%)	
	Owner-occupied			Private rental			
Mains gas	67.6	77.1	9.6	52.6	61.8	9.2	
Electricity	17.7	11.0	-6.6	35.3	29.1	-6.2	
Oil	7.9	8.0	0.1	5.7	6.2	0.5	

- Rating inputs and their reliance on energy sources
 - ightarrow Energy efficiency: price of fuel imes energy usage Fuel prices
 - \rightarrow Carbon emissions: carbon footprint imes energy usage Fuel sources

Energy sources	Mains gas	Electricity	Heating oil
Price (pence per kWh)	3.48	13.19	5.44
CO_2 (Kg CO_2 per kWh)	0.216	0.519	0.298
Price per unit CO ₂	18.1	25.4	18.3

Backward-looking carbon factors of the fuel source Carbon factors

CONCLUSION

Conclusion

- Characterize and understand the drivers of residential property investments in energy efficiency.
- Financial considerations play an important role in the investments undertaken.
- Relates intensity and nature of investments undertaken to asset ownership
 - \rightarrow Regulations are effective in triggering investment
 - → Investments are capitalized as higher rents but are economically small to compensate for the additional capital expenditures.
 - \rightarrow At the same time, if certificates are used to tackle the climate challenge, it is important that the information contained in them accurately reflects emissions.
 - \rightarrow Moreover, it is important to do so using a forward-looking perspective.
- The focus of the legislation and certificates on energy efficiency as opposed to environmental impact may have limited impact on reductions in carbon emissions.

34 / 58

Star rating for the different elements of the home

	Percentage	e of obs	ervations v	vith class	sification (%)	Numbe	r of stars
Property element	Very poor	Poor	Average	Good	Very good	Mean	Stdev
	Pane	l A: Sing	gle certifica	te prope	rties		
Main heat	4.0	3.8	11.7	75.6	4.9	3.74	0.78
Main heat controls	6.5	11.1	34.0	47.6	0.8	3.25	0.90
Windows	7.3	5.2	57.1	30.0	0.4	3.11	0.81
Roof	17.2	6.4	21.8	45.9	8.7	3.22	1.23
Lighting	17.5	12.0	17.7	19.5	33.3	3.39	1.48
Hot water	6.4	7.6	16.6	63.4	6.0	3.55	0.95
Walls	26.8	16.9	7.9	47.1	1.4	2.79	1.31
Pa	nel B: First c	ertificat	e of multipl	e certific	ate properties	6	
Main heat	6.1	7.9	16.0	61.2	8.8	3.59	0.97
Main heat controls	10.4	23.9	36.7	28.6	0.3	2.84	0.96
Windows	11.8	7.3	54.1	26.7	0.1	2.96	0.90
Roof	21.6	9.0	24.5	38.7	6.3	2.99	1.26
Lighting	23.6	14.5	18.5	18.6	24.8	3.07	1.50
Hot water	10.2	10.7	19.7	50.6	8.9	3.37	1.11
Walls	32.4	21.1	5.0	41.1	0.4	2.56	1.32

Full sample:

Energy efficiency points_{*it*} =
$$\alpha + \sum_{j} \sum_{l=1}^{7} \beta_{jl} D_{ijlt} + \gamma X_{it} + \epsilon_{it}$$
 (1)

i denotes property, *j* the element (j = main heat, walls, etc), *l* the star rating associated with that element (l = 1, ..., 7), and *t* time D_{ijlt} is a dummy variable that takes the value of one if property *i* element *j* has star rating *l*

at time t, and zero otherwise. X_{it} is a vector of other property characteristics

Sample of multiple certificate properties:

$$\Delta$$
Energy efficiency_{*i*,*t'*,*t''* = Energy efficiency_{*i*,*t''*} - Energy efficiency_{*i*,*t'*}. (2)}

t' and t'' denote the two times at which a certificate is issued for a given property

Estimated coefficients of the control variables

Property age

Built form

Variance decomposition: factor loadings versus characteristics

	Total	Variance	Variance	Covariance
	variance	Δ Loadings	Δ Characteristics	Δ Loadings, Δ Characteristics
Variance	113.36	10.07	125.91	-22.62
Fraction	100.0%	8.9%	111.1%	-20.0%

Initial characteristics of properties by tenure

Element	Variable	Owner-occupied	Private rental
Energy efficiency	Points (mean) Points (median)	58.5 61	60.5 63
Main heat	Number of stars (mean)	3.7	3.6
	Very poor or poor (%)	7.3	16.2
Main heat controls	Number of stars (mean)	3.1	2.8
	Very poor or poor (%)	21.6	34.5
Windows	Number of stars (mean)	3.1	3.0
	Very poor or poor (%)	14.6	21.8
Roof	Number of stars (mean)	3.1	2.9
	Very poor or poor (%)	26.5	32.9
Lighting	Number of stars (mean)	3.0	3.1
	Very poor or poor (%)	38.7	38.8
Walls	Number of stars (mean)	2.7	2.4
	Very poor or poor (%)	50.3	57.0
Hot water	Number of stars (mean)	3.5	3.4
	Very poor or poor	15.9	18.4
Property type	House, Bungalow, Park home (%)	84.9	54.5
	Flat, Maisonette (%)	15.1	45.5
Built form	Detached, Semi-detached (%)	61.9	40.3
	Other built-forms (%)	37.2	56.8
Roof type	Pitched roof (%)	82.8	62.6
	Another dwelling above (%)	8.9	27.2
Walls type	Cavity walls (%)	65.7	49.9
	Solid brick walls (%)	22.7	35.0

Initial characteristics of properties by tenure

Element	Variable	Owner-occupied	Private rental
Energy efficiency	Points (mean)	58.5	60.5
	Points (median)	61	63
Main heat	Number of stars (mean)	3.7	3.6
	Very poor or poor (%)	7.3	16.2
Main heat controls	Number of stars (mean)	3.1	2.8
	Very poor or poor (%)	21.6	34.5
Windows	Number of stars (mean)	3.1	3.0
	Very poor or poor (%)	14.6	21.8
Roof	Number of stars (mean)	3.1	2.9
	Very poor or poor (%)	26.5	32.9
Lighting	Number of stars (mean)	3.0	3.1
	Very poor or poor (%)	38.7	38.8
Walls	Number of stars (mean)	2.7	2.4
	Very poor or poor (%)	50.3	57.0
Hot water	Number of stars (mean)	3.5	3.4
	Very poor or poor	15.9	18.4
Property type	House, Bungalow, Park home (%)	84.9	54.5
	Flat, Maisonette (%)	15.1	45.5
Built form	Detached, Semi-detached (%)	61.9	40.3
	Other built-forms (%)	37.2	56.8
Roof type	Pitched roof (%)	82.8	62.6
	Another dwelling above (%)	8.9	27.2
Walls type	Cavity walls (%)	65.7	49.9
	Solid brick walls (%)	22.7	35.0

Initial characteristics of properties by tenure

Element	Variable	Owner-occupied	Private rental
Energy efficiency	Points (mean)	58.5	60.5
	Points (median)	61	63
Main heat	Number of stars (mean)	3.7	3.6
	Very poor or poor (%)	7.3	16.2
Main heat controls	Number of stars (mean)	3.1	2.8
	Very poor or poor (%)	21.6	34.5
Windows	Number of stars (mean)	3.1	3.0
	Very poor or poor (%)	14.6	21.8
Roof	Number of stars (mean)	3.1	2.9
	Very poor or poor (%)	26.5	32.9
Lighting	Number of stars (mean)	3.0	3.1
	Very poor or poor (%)	38.7	38.8
Walls	Number of stars (mean)	2.7	2.4
	Very poor or poor (%)	50.3	57.0
Hot water	Number of stars (mean)	3.5	3.4
	Very poor or poor	15.9	18.4
Property type	House, Bungalow, Park home (%)	84.9	54.5
	Flat, Maisonette (%)	15.1	45.5
Built form	Detached, Semi-detached (%)	61.9	40.3
	Other built-forms (%)	37.2	56.8
Roof type	Pitched roof (%)	82.8	62.6
	Another dwelling above (%)	8.9	27.2
Walls type	Cavity walls (%)	65.7	49.9
	Solid brick walls (%)	22.7	35.0

Heterogeneity as a function of tenure and time period

Larger improvements after the regulation for rental private properties

Group	Number obs.	Fraction	Initial points	Δ Points	Change			
	Panel A: Sa	mple perio	d 2008 - 2020					
Owner-occupied	398,494	0.53	40.0	16.2	41%			
Rental private	288,392	0.38	37.8	17.3	46%			
Rental social	64,651	0.09	44.2	16.3	37%			
Panel B: Before April 1, 2015								
Owner-occupied	157,411	0.65	39.9	14.5	36%			
Rental private	59,430	0.24	39.2	14.8	38%			
Rental social	27,099	0.11	44.1	15.6	35%			
	Panel C: After April 1, 2015							
Owner-occupied	241,083	0.47	40.1	17.3	43%			
Rental private	228,962	0.45	37.4	17.9	48%			
Rental social	37,552	0.07	44.2	16.8	38%			

Probability and timing of subsequent certificate

Greater probability of requesting a second certificate, if the property is below the threshold and is on the private rental market)

	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.210***	0.197***	0.174***	0.177***	0.242***	0.636***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
$1_{Points < 39}$		0.194***	0.200***	0.168***	0.102***	0.133***
		(0.000)	(0.000)	(0.000)	(0.001)	(0.001)
$\mathbb{1}_{PrivateRental}$			0.063***	0.055***	0.041***	-0.064***
			(0.000)	(0.000)	(0.001)	(0.001)
$\mathbb{1}_{Points < 39} \times \mathbb{1}_{PrivateRental}$				0.125***	0.138***	0.128***
				(0.001)	(0.001)	(0.002)
Sample	Full	Full	Owner-0./	Owner-0./	Owner-0./	Owner-0./
			Priv. rental	Priv. rental	Priv. rental	Priv. rental
					Bot. tercile	Bot. tercile
						Pre Apr/15
Observations	17,701,555	17,701,555	13,968,431	13,968,431	3,686,438	1,296,017
\mathbb{R}^2	0.000	0.013	0.021	0.023	0.028	0.033

Merging EPC and Rightmove

- Consider a property with 3 issued certificates (2009, 2018 and 2019)
- The same property was on the rental market 11 times
- We associate each rental listing with the previous issued certificate
- We identify properties on both the EPC and the Rightmove dataset by their UPRN (unique property reference number)

Energy efficiency versus environmental impact gains

Difference-in-Differences

Dependent variable	Δ Energy	Δ Environ.	Δ Energy/Env.	Δ Energy	Δ Environ.	Δ Energy/Env.
	(1)	(2)	(3)	(4)	(5)	(6)
$\mathbbm{1}_{RentalPrivate}$	0.378***	-0.738***	0.028***	0.528***	0.285***	0.004***
	(0.077)	(0.073)	(0.001)	(0.077)	(0.072)	(0.001)
$\mathbbm{1}_{ApprovalToEnforcement}$	2.099***	1.741***	-0.001	1.298***	1.220***	-0.006**
	(0.063)	(0.060)	(0.001)	(0.151)	(0.142)	(0.003)
$1_{PostEnforcement}$	3.152***	2.350***	0.006***	0.836***	1.422***	-0.021***
	(0.058)	(0.055)	(0.001)	(0.185)	(0.174)	(0.003)
$\mathbb{1}_{Rental Private} \times \mathbb{1}_{Approval To Enforcement}$	2.038***	0.460***	0.043***	1.180***	0.247**	0.027***
	(0.119)	(0.113)	(0.002)	(0.119)	(0.112)	(0.002)
$\mathbb{1}_{RentalPrivate} \times \mathbb{1}_{PostEnforcement}$	-0.531***	-1.890***	0.039***	-0.102	-1.096***	0.028***
	(0.095)	(0.090)	(0.002)	(0.094)	(0.089)	(0.002)
Constant	14.555***	13.015***	0.016***	15.698***	12.935***	0.044***
	(0.040)	(0.038)	(0.001)	(0.116)	(0.110)	(0.002)
Property Characteristics Fixed Effects	No	No	No	Yes	Yes	Yes
RdSAP Convention Fixed Effects	No	No	No	Yes	Yes	Yes
R-Squared	0.01	0.01	0.02	0.06	0.07	0.06
Observations	671,492	671,492	671,485	671,274	671,274	671,267

Energy efficiency versus environmental impact gains

Difference-in-Differences, Matched sample

Dependent variable	Δ Energy	Δ Environ.	Δ Energy/Env.	Δ Energy	Δ Environ.	Δ Energy/Env.
	(1)	(2)	(3)	(4)	(5)	(6)
Rental private	0.722***	0.592***	0.002	0.703***	0.563***	0.002
	(0.093)	(0.089)	(0.001)	(0.088)	(0.080)	(0.001)
Approval to enforcement	1.647*** (0.100)	0.873*** (0.096)	0.014*** (0.001)			
Post-enforcement	3.071*** (0.075)	1.723*** (0.072)	0.025*** (0.001)			
Rental Priv. \times Approval to enforcement	2.490***	1.328***	0.024***	2.504***	1.307***	0.024***
	(0.142)	(0.136)	(0.002)	(0.135)	(0.122)	(0.002)
Rental Priv. \times Post-enforcement	-0.450***	-1.263***	0.020***	-0.439***	-1.265***	0.020***
	(0.106)	(0.101)	(0.001)	(0.101)	(0.091)	(0.001)
Constant	14.212***	11.686***	0.022***	16.455***	12.937***	0.041***
	(0.066)	(0.063)	(0.001)	(0.028)	(0.025)	(0.000)
Pair fixed effects	No	No	No	Yes	Yes	Yes
R-Squared	0.01	0.00	0.01	0.55	0.60	0.57
Observations	562,404	562,404	562,395	560,966	560,966	560,948

Transition to tenure

		Tenu	re in the subse	equent certificat	е	
Initial tenure and score	No cert.	Owner-occ.	Rental priv.	Rental social	Other	Total
			Number of ob	servations		
Owner-occupied <39	504,796	191,472	65,282	3,598	5,145	770,293
Owner-occupied \geq 39	7,522,684	1,228,923	289,612	67,766	28,249	9,137,234
Rental private < 39	125,861	36,726	965,83	2,877	2,236	264,283
Rental private \geq 39	2,918,741	281,953	542,848	36,349	16,730	3,796,621
Rental social < 39	29,151	2,218	3,516	14,459	257	49,601
Rental social \geq 39	2,577,780	47,568	39,486	619,592	6,872	3,291,298
	Fraction of the total					
Owner-occupied < 39	0.66	0.25	0.08	0.00	0.01	1.00
Owner-occupied \geq 39	0.82	0.13	0.03	0.01	0.00	1.00
Rental private <39	0.48	0.14	0.37	0.01	0.01	1.00
Rental private \geq 39	0.77	0.07	0.14	0.01	0.00	1.00
Rental social <39	0.59	0.04	0.07	0.29	0.01	1.00
Rental social \geq 39	0.78	0.01	0.01	0.19	0.00	1.00

	Tenure in the subsequent certificate				
Initial tenure and score	No certificate	Owner-occupied	Rental private	Rental social	
Owner-occupied < 39					
Energy efficiency score	27.20	26.25	25.72	26.30	
Subsequent change in score	-	23.46	27.23	28.82	
Rental private < 39					
Energy efficiency score	26.28	27.34	27.00	26.55	
Subsequent change in score	-	19.67	20.26	23.43	
Rental Social < 39					
Energy efficiency score	28.72	26.42	26.94	28.63	
Subsequent change in score	-	24.23	22.24	26.37	

Fraction of transacted properties below 39

Energy costs versus CO_2 emissions

Difference-in-Differences

Dependent variable	Δ En. Cost	$\Delta \operatorname{CO}_2$	$\Delta~({\rm En.~Cost/CO_2})$	Δ En. Cost	$\Delta \operatorname{CO}_2$	Δ (En. Cost/CO ₂)
	(1)	(2)	(3)	(4)	(5)	(6)
Rental Private	1.322	193.185***	-2935.909***	-8.889***	-88.944***	-608.579***
	(0.926)	(11.310)	(94.112)	(0.929)	(11.197)	(93.504)
Approval to enforcement	-15.421***	-270.227***	831.850***	-8.069***	-105.244***	138.799
	(0.762)	(9.307)	(77.437)	(1.825)	(21.994)	(183.654)
Post-enforcement	-26.054***	-371.864***	349.799***	-3.511	-96.527***	1047.916***
	(0.702)	(8.578)	(71.379)	(2.237)	(26.956)	(225.093)
Rental Private \times Approval to enforcement	-23.476***	-202.045***	-785.938***	-18.701***	-157.974***	-619.753***
	(1.432)	(17.481)	(145.457)	(1.437)	(17.316)	(144.597)
Rental Private \times Post-enforcement	5.776***	129.268***	-941.712***	-3.642***	20.985	-1032.763***
	(1.146)	(13.995)	(116.452)	(1.139)	(13.724)	(114.597)
Constant	-148.435***	-1822.069**	* 1670.193***	-154.139***	-1842.662**	* 524.523***
	(0.481)	(5.870)	(48.845)	(1.410)	(16.994)	(141.908)
Property Characteristics Fixed Effects	No	No	No	Yes	Yes	Yes
RdSAP Convention Fixed Effects	No	No	No	Yes	Yes	Yes
R-Squared	0.00	0.01	0.01	0.04	0.07	0.07
Observations	671,491	671,492	671,462	671,273	671,274	671,244

Fuel prices

Fuel sources

- Certificates do not use updated information on carbon footprint
 - \rightarrow In 2014 (2020), the Kg CO₂e emissions per KWh of electricity were 0.519 (0.23314)
 - \rightarrow For natural gas they were 0.216 (0.20374), and heating oil 0.298 (0.28484)
 - $\rightarrow\,$ Electricity became "greener" by the end of the decade, but the CO_2 emissions from electricity generation were larger by 14% than those from natural gas by 2020

Main fuel initial/final	Δ Energy cost (£/year)	Δ Emissions (kg CO $_2$ /year)	Δ Emissions updated (kg CO $_2$ /year)	Number of properties
Mains gas to mains gas	-141.99	-1.89	-2.23	404,135
Electricity to electricity	-124.52	-0.86	-2.54	113,879
Oil to oil	-144.06	-2.14	-2.37	19,268
Electricity to mains gas	-351.89	-4.04	-4.02	45,399
Mains gas to electricity	-15.27	-0.41	-1.98	3,400

- Certificates do not use updated information on carbon footprint
 - \rightarrow In 2014 (2020), the Kg CO $_2e$ emissions per KWh of electricity were 0.519 (0.23314)
 - \rightarrow For natural gas they were 0.216 (0.20374), and heating oil 0.298 (0.28484)
 - $\rightarrow\,$ Electricity became "greener" by the end of the decade, but the CO_2 emissions from electricity generation were larger by 14% than those from natural gas by 2020

Main fuel initial /final	Δ Energy cost	Δ Emissions	Δ Emissions updated	Number of
Main ruei mitiai/miai	(£/year)	$(kg CO_2/year)$	(kg CO ₂ /year)	properties
Mains gas to mains gas	-141.99	-1.89	-2.23	404,135
Electricity to electricity	-124.52	-0.86	-2.54	113,879
Oil to oil	-144.06	-2.14	-2.37	19,268
Electricity to mains gas	-351.89	-4.04	-4.02	45,399
Mains gas to electricity	-15.27	-0.41	-1.98	3,400

- Certificates do not use updated information on carbon footprint
 - \rightarrow In 2014 (2020), the Kg CO₂e emissions per KWh of electricity were 0.519 (0.23314)
 - \rightarrow For natural gas they were 0.216 (0.20374), and heating oil 0.298 (0.28484)
 - $\rightarrow\,$ Electricity became "greener" by the end of the decade, but the CO_2 emissions from electricity generation were larger by 14% than those from natural gas by 2020

Main fuel initial/final	Δ Energy cost	Δ Emissions	Δ Emissions updated	Number of
	(L/year)	(kg CO ₂ /year)	(kg CO ₂ /year)	properties
Mains gas to mains gas	-141.99	-1.89	-2.23	404,135
Electricity to electricity	-124.52	-0.86	-2.54	113,879
Oil to oil	-144.06	-2.14	-2.37	19,268
Electricity to mains gas	-351.89	-4.04	-4.02	45,399
Mains gas to electricity	-15.27	-0.41	-1.98	3,400

- Certificates do not use updated information on carbon footprint
 - \rightarrow In 2014 (2020), the Kg CO₂e emissions per KWh of electricity were 0.519 (0.23314)
 - \rightarrow For natural gas they were 0.216 (0.20374), and heating oil 0.298 (0.28484)
 - $\rightarrow\,$ Electricity became "greener" by the end of the decade, but the CO_2 emissions from electricity generation were larger by 14% than those from natural gas by 2020

Main fuel initial/final	Δ Energy cost (£/year)	Δ Emissions (kg CO $_2$ /year)	Δ Emissions updated (kg CO $_2$ /year)	Number of properties
Mains gas to mains gas	-141.99	-1.89	-2.23	404,135
Electricity to electricity	-124.52	-0.86	-2.54	113,879
Oil to oil	-144.06	-2.14	-2.37	19,268
Electricity to mains gas	-351.89	-4.04	-4.02	45,399
Mains gas to electricity	-15.27	-0.41	-1.98	3,400

Unobserved investments by owner-occupiers

- The properties for which and the times when certificates are issued are not random
- If those who invest in property improvements are more likely to request a new certificate, then the sample of multiple certificate properties includes a larger investment intensity than the full sample
- Homeowners who invest in their property but who do not plan to sell it may not request a new certificate
- Investments in energy efficiency that we do not observe more likely to be in the sample of owner occupiers than private rental.
- Merge EPC data with Land Registry data (residential property transactions in England and Wales)
- When do individuals request a certificate?

Property transactions and certificates

Years between transaction and certificate

Years of remaining certificate validity

Unobserved investments by owner-occupiers

- Individuals request certificates prior to a transaction
- Sample for which we observe at least two transactions
 - → Assumption: those property owners who undertake investments request a new certificate prior to a sale.
 - $\rightarrow\,$ For this sample, for roughly 72% of the properties we only observe one certificate. For the remainder 28% we observe two or more certificates
 - → For those for which we observe two certificates, the average initial level of energy efficiency is 55.1 and the average change in energy efficiency score between the two certificates is 7.6, or 13.8%
 - \rightarrow Main point: provide a number (of 72%) for the proportion of properties for which investments are unlikely to have been undertaken
 - \rightarrow Fraction of properties with only one certificate in the full sample 78%

Most common transitions

Property element	Initial element description (stars)	Subsequent element description (stars)	ΔSAP	Capex	Capex/
			points	incurred (£)	ΔSAP
Mainheat	Room heaters, electric (1)	Boiler and radiators, mains gas (4)	13.92	5000	359.20
Mainheat controls	Programmer, no room thermostat (1)	Programmer, room thermostat and TRVs (4)	7.41	400	53.98
Windows	Single glazed (1)	Fully double glazed (3)	4.20	4851	1,155.00
Roof	Pitched 100mm, loft insulation (3)	Pitched 270mm, loft insulation (4)	1.42	225	158.45
	Pitched no insulation (1)	Pitched 270mm, loft insulation (4)	8.64	225	26.04
Lighting	Low energy lighting ($<=20\%$ of fixed outlets) (1)	Low energy lighting ($>=80\%$ of fixed outlets) (5)	2.37	38	16.03
Walls	Cavity wall (no insulation) (2)	Cavity, insulated (4)	7.18	1000	139.28
	Solid brick (no insulation) (1)	Solid brick, insulated (4)	9.19	9000	979.33

References I

- Allcott, Hunt and Michael Greenstone (2017). *Measuring the welfare effects of residential energy efficiency programs*. Tech. rep. National Bureau of Economic Research.

Berkouwer, Susanna B and Joshua T Dean (2022). "Credit, attention, and externalities in the adoption of energy efficient technologies by low-income households". In: American Economic Review, Forthcoming.

- Bernstein, A., M. T. Gustafson, and R. Lewis (2019). "Disaster on the horizon: The price effect of sea level rise". In: *Journal of Financial Economics* 134.2, pp. 253–272.
- Christensen, Peter et al. (2020). "Decomposing the wedge between projected and realized returns in energy efficiency programs". In: *The Review of Economics and Statistics*, pp. 1–46.
- Eichholtz, P., N. Kok, and J. Quigley (2010). "Doing well by doing good? Green office buildings". In: American Economic Review 100, pp. 2492–2509.
- Fowlie, Meredith, Michael Greenstone, and Catherine Wolfram (2015). "Are the non-monetary costs of energy efficiency investments large? Understanding low take-up of a free energy efficiency program". In: American Economic Review 105.5, pp. 201–04.
- (2018). "Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program". In: The Quarterly Journal of Economics 133.3, pp. 1597–1644.
- Fuerst, F. et al. (2015). "Does Energy Efficiency Matter to Home Buyers? An Investigation of EPC Ratings and Transaction Prices in England". In: Energy Economics 48, pp. 145–151.

References II

Gete, P. and A. Tsouderou (2021). "Climate Risk and Mortgage Markets: Evidence from Hurricanes Harvey and Irma". In: Working Paper, IE Business School.

Giglio, S. et al. (2021). "Climate change and long-run discount rates: Evidence from Real Estate". In: The Review of Financial Studies 34.8, pp. 3527–3571.

Issler, P. et al. (2020). "Mortgage markets with climate-change risk. Evidence from wildfires in California.". In: Working Paper, UC Berkeley.

Jaffee, Dwight, Richard Stanton, and Nancy Wallace (2019). "Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.". In: The Journal of Real Estate Finance and Economics 59, pp. 329–371.

Murfin, J. and M. Spiegel (2020). "Is the Risk of Sea Level Rise Capitalized in Residential Real Estate?" In: *The Review of Financial Studies* 33, pp. 1217–1255.

Ortega, F. and S. Taspinar (2018). "Rising sea levels and sinking property values: Hurricane Sandy and New York's housing market". In: *Journal of Urban Economics* 106, pp. 81–100.