Labor Market Integration and Entrepreneurship

Hanming Fang (Penn), Ming Li (CUHK-SZ), Wei Lin (CUHK-SZ)

May 2024

Motivation

- Despite the well-known Hukou policies, China has seen a large increase in internal migration in the last 30 years.
 - ▶ The overall cross-city migrant population grew from 21 million in 1990 to 253 million in 2015.
 - Cross-city migration of urban residents start to overtake rural-urban migration as the more dominant form of migration
 - Job seekers (existing literature)
- Entrepreneurial activity exhibits great regional variation.
 - More than 50% of entrepreneurs establish their firms outside their hometown cities, and more than 30% are outside their hometown provinces.
 - Job creators (new)
- The two groups' migration decisions are closely related, and they jointly shape the economic distribution within the country.

• How do labor market mobility restrictions affect entrepreneurial mobility?

- ► Use heterogeneous changes in Hukou restrictions to examine the effect
- What is the equilibrium welfare effect?
 - Build a quantitative spatial equilibrium model with labor and firm location choice simultaneously

Heterogeneous Hukou Policies

《上海市居住证》积分指标体系表

指	指标分类及 名称 最高分值		8分类及 名称 最高分值 指标描述/具体积分标准		备注
	年龄	30分	56-60周岁,积5分;年龄每减少1岁, 积分增加2分	少1岁 积2分	1
			大专(高职)学历	50分	
		南背景 110分	大学本科学历	60分	
	教育背景		大学本科学历和学士学位	90分	
			硕士研究所学历学位	100分	
35			博士研究生学历学位	110分	1
础	专业技术 职称项技 140分 能等级	此技术	技能类国家职业资格五级	15分	两项指标
指			技能类国家职业资格四级	30分	2世纪年一坝
标			技能类国家职业资格三级		1111100
		140分	技能类国家职业资格二级 或中级职称	100分	
			技能类国家职业资格—级 或高级职称	140分	
	繳费年限	1	缴纳职工社会保险费。 每满1年	3分	1

Literature

Internal Migration

- Morten and Oliveira (2018); Allen et al. (2018); Bryan and Morten (2018)
- Beerli et al. (2021)
- We consider firm and labor market effects of internal migration jointly, and estimate the welfare effect in *equilibrium*

Firm Location Choice

- Behrens et al. (2014); Gaubert (2018); Fajgelbaum et al. (2019); Kleinman (2022), etc.
- We account for the role of inter-regional labor mobility restrictions and their changes in shaping the firms' location choice.
- Identification of policy-induced sorting: We leverage the sample of mover entrepreneurs

Hukou system

- Imbert et al. (2022); Tombe and Zhu (2019); An et al. (2020);
- We are the first to distinguish heterogeneities in Hukou policy and study its distributional effect on entrepreneurial activities

Distribution of Entrepreneurial Activities

(a) # of New Firms (2015)

(b) % established by movers (2015)

Labor are Migrating to Larger Cities

Entrepreneurs are Moving to Larger Cities

(a) Share of Migrant Entrepreneurs

(b) Migrant Entrepreneurs Favor Larger Cities

Hukou Policy over the Past Decades

- First wave (1984-1997): 'Blue Stamp Hukou,' allowed entrepreneurs who made significant investments, white collar workers, and farmers who had been displaced by government purchases of their land to acquire urban Hukou.
- Second wave (1997 to 2001): enabled migrants who were permanently residing in certain (mostly smaller) cities to apply for local Hukou.
- Third wave (2002 to 2013): extended these regulations to 123 larger cities.
- Last wave (2014 to Now): "Guiding Opinions on Further Deepening the Reform of the Household Registration System," by the State Council, but cities may carry out their own policies.

- The policy details are highly heterogenous across cities, and **distinguish by group** of migrants example
- We collect data on all migration-related policy reforms from policy platforms, gazettes, websites and news portals for each city.
 - A Hukou reform is a deviation from the 0) baseline Hukou policies.
 - ► For each document, we summarize the requirements into six categories: education degree, skill, investment, employment, purchase of housing units, and others.
 - We further classify all Hukou reforms into three broad categories based on their requirements for Hukou eligibility: 1) skill-biased requirement; 2) other requirements; 3) no restriction or only minimum requirement on employment.

Hukou Policies Over Years

Hukou Policies in 2000

Hukou Policies Over Years

Hukou Policies in 2015

A comprehensive data set covering 30 million firms registered from 1995-2019.

- Firm registration: Detailed firms' registration information, including the establishment date, exit date (if any), industry, registration place, registered capital, shareholders, and legal person.
- Firm inspection data: Detailed firms' yearly reports
- Entrepreneur (with unique identifier): the firm's shareholder and legal person's identity, birth place, birth year, and investment history.

A comprehensive administrative data set from 2008 to 2016.

- Collected by the Chinese State Administration of Tax (SAT)
- Stratified sampling of more than 500 thousand firms each year.
- We use this data set to measure firms' performance: revenue, profit, value-added, TFP, employment, and wage.

Migration Flow Data

Migration flows 1996-2015: Constructed from China Population Census 2000, 2005 (mini), 2010, 2015 (mini)

- We identify an individual to be a migrant if he/she reported a move and the time of move within five years of each census year
 - City of origin defined as the city of Hukou registration
 - City of destination defined as the city of living and working
- We validate the measure using additional questions in the 2010 and 2015 census
 - The city of residence 1 and 5 years ago
 - ► The date and origin city of the last migration in the last 5 years
- For example, our migrant flows in 1996 are based on people who migrated in 1996 and resided at their destination for at least 4 years where we observe them in the 2000 census.

Hukou Reform and Entrepreneurship

We employ a diff-in-diff strategy at city level, with various policy measures as the treatment, relative to the control (baseline Hukou policy).

$$Y_{ct} = \beta_0 + \beta_1 Policy_{ct} + \gamma_c + \delta_t + \epsilon_{ct}$$

where

- Y_{ct} : Number of *new* firms (in log) in city c at year t
- *Policy*_{ct}: indicators of different types of Hukou policy
 - Hukou_skill_{ct}: education/skill/business investment
 - Hukou_other_{ct}: other requirements such as long-term employment, housing purchase, etc.
 - Hukou_nonrestrictive_{ct}: no requirement or minimum requirement on employment
 - Hukouct: indicator for any one of the above three reform

Hukou Reform and Entrepreneurship

	Total	Total	Migrant	Local
Hukou	0.0154			
	(0.0160)			
Hukou_skill	, ,	0.00950	0.0626***	-0.0600***
_		(0.0272)	(0.0195)	(0.0190)
Hukou_other		-0.0175	0.0275	-0.0337*
_		(0.0290)	(0.0205)	(0.0181)
Hukou_nonrestrictive		0.0741***	0.0917***	0.0691**
_		(0.0244)	(0.0311)	(0.0290)
Controls	Yes	Yes	Yes	Yes
City, Year FE, City Time Trend	Yes	Yes	Yes	Yes
Observations	6,816	6,816	6,816	6,816
R-squared	0.981	0.981	0.977	0.983

Y: log(# of New Firms)

- Skill-biased Hukou reform changes the composition, but not the total number of entrepreneurs.
- Nonrestrictive Hukou reform spurs overall entrepreneurship (both local and migrant).

Why do entrepreneurs respond to different policies differently?

- Local labor market skill composition
 - Skill-biased Hukou policy may attract more high-skilled workers, non-restrictive Hukou policies also attract low-skilled workers
 - > This is particularly important for entrepreneurs in the low-skill-intensity industries
- Firms in different industries may respond differently
 - Low skill intensity firms may be hurt by skill-biased Hukou policy facing more fierce competition from migrant entrepreneurs
 - High skill intensity firms benefit from the skill-biased policy with cheaper high-skill labor
 - Low skill intensity firms may benefit from non-restrictive policy which also attracts abundant low-skill worker
 - High skill intensity firms may benefit even more from non-restrictive policy

For city c, year t, and number of migrant workers of skill type i:

$$Y_{ict} = \beta_0 + \beta_1 Policy_{ct} + \gamma_c + \delta_t + \epsilon_{ct}$$

- Y_{ict} : # of Migrant Inflow of type i (in log), in city c in year t
- We again consider skill-biased policy vs. policy with other requirement vs. non-restrictive policy

Hukou Reform and Labor Migration

.

Y: log(# of Migrant Inflow)

	Total	Below College	College & Above
Hukou_skill	0.127***	0.0309	0.214***
—	(0.0397)	(0.0318)	(0.0421)
Hukou_other	0.122***	0.0637**	0.152***
—	(0.0392)	(0.0314)	(0.0416)
Hukou_nonrestrictive	0.159***	0.213***	0.113*
—	(0.0585)	(0.0469)	(0.0531)
Constant	2.974***	2.743***	1.417***
	(0.0110)	(0.00882)	(0.0117)
City, Year FE, City Trend	Yes	Yes	Yes
Observations	6,292	6,292	6,292
R-squared	0.811	0.863	0.767

• Policies with skill requirements or other requirements mainly attract high-skill labor

Nonrestrictive policies attract both high-skill and low-skill labor ۰

	log(Revenue)	log(Employment)	log(Wage)
Hukou_skill	-0.078***	-0.0227***	0.0400***
	(0.0240)	(0.00378)	(0.00494)
Hukou_skill*Skill	0.194***	0.0961***	-0.0347***
	(0.0390)	(0.00607)	(0.00796)
Hukou_other	-0.168***	-0.0211***	0.0177***
	(0.0253)	(0.00399)	(0.00526)
Hukou_other*Skill	0.210***	0.107***	-0.0117
	(0.0406)	(0.00629)	(0.00833)
Hukou_nonrestrictive	0.701***	0.00364	-0.00118
	(0.0300)	(0.00447)	(0.00582)
Hukou_nonrestrictive*Skill	0.273***	0.0661***	0.00422
	(0.0470)	(0.00707)	(0.00923)
Firm, Year FE	Yes	Yes	Yes
Observations	3,611,719	3,003,272	2,821,212
R-squared	0.911	0.922	0.638

20 / 33

	log(Revenue)	log(Employment)	log(Wage)
Hukou_skill	-0.078***	-0.0227***	0.0400***
—	(0.0240)	(0.00378)	(0.00494)
Hukou_skill*Skill	0.194***	0.0961***	-0.0347***
	(0.0390)	(0.00607)	(0.00796)
Hukou_other	-0.168***	-0.0211***	0.0177***
	(0.0253)	(0.00399)	(0.00526)
Hukou_other*Skill	0.210***	0.107***	-0.0117
	(0.0406)	(0.00629)	(0.00833)
Hukou_nonrestrictive	0.701***	0.00364	-0.00118
	(0.0300)	(0.00447)	(0.00582)
Hukou_nonrestrictive*Skill	0.273***	0.0661***	0.00422
	(0.0470)	(0.00707)	(0.00923)
Firm, Year FE	Yes	Yes	Yes
Observations	3,611,719	3,003,272	2,821,212
R-squared	0.911	0.922	0.638

	log(Revenue)	log(Employment)	$\log(Wage)$
Hukou_skill	-0.078***	-0.0227***	0.0400***
—	(0.0240)	(0.00378)	(0.00494)
Hukou_skill*Skill	0.194***	0.0961***	-0.0347***
	(0.0390)	(0.00607)	(0.00796)
Hukou_other	-0.168***	-0.0211***	0.0177***
	(0.0253)	(0.00399)	(0.00526)
Hukou_other*Skill	0.210***	0.107***	-0.0117
	(0.0406)	(0.00629)	(0.00833)
Hukou_nonrestrictive	0.701***	0.00364	-0.00118
	(0.0300)	(0.00447)	(0.00582)
Hukou_nonrestrictive*Skill	0.273***	0.0661***	0.00422
	(0.0470)	(0.00707)	(0.00923)
Firm, Year FE	Yes	Yes	Yes
Observations	3,611,719	3,003,272	2,821,212
R-squared	0.911	0.922	0.638

	log(Revenue)	log(Employment)	$\log(Wage)$
Hukou_skill	-0.078***	-0.0227***	0.0400***
—	(0.0240)	(0.00378)	(0.00494)
Hukou_skill*Skill	0.194***	0.0961***	-0.0347***
	(0.0390)	(0.00607)	(0.00796)
Hukou_other	-0.168***	-0.0211***	0.0177***
	(0.0253)	(0.00399)	(0.00526)
Hukou_other*Skill	0.210***	0.107***	-0.0117
	(0.0406)	(0.00629)	(0.00833)
Hukou_nonrestrictive	0.701***	0.00364	-0.00118
	(0.0300)	(0.00447)	(0.00582)
Hukou_nonrestrictive*Skill	0.273***	0.0661***	0.00422
	(0.0470)	(0.00707)	(0.00923)
Firm, Year FE	Yes	Yes	Yes
Observations	3,611,719	3,003,272	2,821,212
R-squared	0.911	0.922	0.638

- We build a spatial equilibrium model following Fajgelbaum et al. (2019) and incorporate heterogeneous worker type and policy-induced type-specific labor mobility cost.
 - Bryan and Morten (2019) have heterogeneous worker type and type-specific labor mobility cost, but do not have firm location choice (and thus no endogenous labor demand)
- The model elucidates our key mechanism: labor sort in response to the reduction in mobility cost, and firms sort with labor.

Model Setup-Worker

- \bullet Closed economy with N cities indexed by $o \mbox{ or } d$
- Mass of *H*-type workers: M_H ; mass of *L*-type workers: M_L , distributed across the *N* origin cities
- Workers are born in a particular origin indexed by *o*, receive idiosyncratic preference shocks for each destination city *d*— characterized by Fréchet parameter ξ— and sort across destination cities based on wages and migration costs.
- Migration costs are relative to the birth location, and is modeled as an iceberg cost τ_{od}^s for workers of type $s \in \{H, L\}$ migrating from o to d
- Workers consume two types of products: *h*-sector product Q_h (high-skill intensity products), *l*-sector product Q_l (low-skill intensity), which are produced by two types of firms.
- The total labor supply in city d is the total number of workers of type s from all origin o who choose city d

- Firms are established and owned by potentially mobile entrepreneurs.
- Firms use *H*-type labor and *L*-type labor to produce output.
- There is a fixed mass of *h*-sector firms producing high-skill products, and a fixed mass of *l*-sector firms producing low-skill products, sorting across cities.
- Firms in each sector decide in which city to locate to maximize the profit according to labor costs and agglomeration forces. The Fréchet parameter ε characterizes the distribution of firms' preferences.
- Goods are freely traded in the baseline model.

Model Setup—Firm

h-sector Firm: a fixed mass of firms M_h decide in which city to locate.

• Cobb-Douglas technology:

 $q_{dh}(\omega) = \varphi_{dh}(\omega) l_{dhH}^{\alpha} l_{dhL}^{1-\alpha}$

where $\varphi_{dh}(\omega) = M_{dh}^{\rho} z_{dh}(\omega)$ is firm-specific productivity.

- M_{dh} is the mass of *h*-type firms choose to locate in city *d*
- ρ captures the agglomeration effect
- $z_{dh}(\omega)$ is firm-specific idiosyncratic productivity shock for city d and firm ω of h-type

l-sector Firm: a fixed mass of firms M_l decide in which city to locate.

• For simplicity, assume that firms in the *l*-sector only employ low-skill worker

 $q_{dl}(\omega) = \varphi_{dl}(\omega) l_{dl}$

A general equilibrium of this economy consists of distributions of workers and firms $\{L_{ods}, M_{dv}\}_{o,d=1}^{N}$, aggregate quantities $\{Q_h, Q_l\}$, wages $\{W_{ds}\}_{d=1}^{N}$, where $s \in \{H, L\}$, $v \in \{h, l\}$, and final good prices $\{P_h, P_l\}$ such that:

- Firms optimize on their location choice and labor demand, given productivity draws and labor cost;
- Workers make consumption and location decisions optimally, given migration cost, preference draws, and wage;
- Final good markets clear in every sector;
- 4 Labor market clears in every city and skill type.

Key Parameters

Parameter	Detail
ξ	Workers' mobility elasticity on wage
τ	Worker's type- and destination- specific mobility cost
e	Workers' employer preference dispersion
ε	Firms' mobility elasticity on cost
α	Firms' production technology parameter
σ	Firms' market power
ho	Agglomeration effect

Identification of Key Parameters

- Step 1: City-year level skill-specific wage W_H and W_L are calibrated from the firm level wage in the tax survey data (2008-2015). The key source of identification is the firms' skill intensity joint with the firms' average wage.
- Step 2: Firms' production technology parameter *α* is then calibrated from the industry-level skill intensity joint with the calibrated skill-specific wage from the step 1.
- Step 3 : Worker's destination-origin-type-year-specific mobility costs τ are estimated from regional wage distributions (from step 1) and the migration flow L_{ods} constructed from the census data.
- Step 4: Workers' mobility elasticity ξ is estimated from the migration flow and the calibrated wage (from step 1).
- Step 5: Firms' preference over regions ε is identified from mover firms' location choice and the estimated labor cost using firm registration data.

.

Parameter	Detail	Value
ξ τ	Workers' mobility elasticity on wage Worker's type- and destination- specific mobility cost	1.4 (estimated from census panel) more
ε ε	Workers' employer preference dispersion Firms' mobility elasticity on cost	Set to be 5 from (Fajgelbaum et al., 2019) 0.5 (estimated from firm registration mover panel)
$lpha \ \sigma \ ho$	Firms' production technology parameter Firms' market power Agglomeration effect	See Figure @ for estimates Set to be 5 from (Fajgelbaum et al., 2019) Set to be 0.2 from (Gaubert, 2018)

Counterfactual - Random 20 Cities

		Biased			Unrestrictive			
	Overall	Relaxed	Unrelaxed	Overall	Relaxed	Unrelaxed		
Panel A: Wage								
Wage (High Skill Labor) Wage (Low Skill Labor)	0.91% -0.47%	-4.86% 2.93%	1.27% -0.69%	0.91% -0.36%	-1.87% -2.40%	1.08% 0.23%		
Panel B: Net Flow								
Labor (High Skill)	-	2.61%	-2.22%	-	4.18%	-2.57%		
Labor (Low Skill)	-	0.58%	-0.04%	-	2.67%	-1.73%		
Firm (High Skill Sector)	-	2.70%	-2.37%	-	3.99%	-1.25%		
Firm (Low Skill Sector)	-	-2.13%	1.82%	-	2.08%	-0.88%		
Panel C: Aggregate Welfare (by Destination)								
Welfare (High Skill Labor) Welfare (Low Skill Labor) Total Welfare	4.46% -0.30% 1.23%	17.15% 3.53% 6.25%	-0.98% -0.73% -0.93%	5.74% 2.02% 2.75%	22.68% 10.23% 12.72%	-1.52% -1.50% -1.52%		

- Both biased and nonrestrictive relaxation attract both high-skill labor and low-skill labor.
- Biased relaxation attracts firms in high-skill sector, but crowds out firms in low-skill sector. Nonrestrictive ones attract both.

Counterfactual - Random 20 Cities

	Biased		Unrestrictive			
	Overall	Relaxed	Unrelaxed	Overall	Relaxed	Unrelaxed
Panel A: Wage						
Wage (High Skill Labor)	0.91%	-4.86%	1.27%	0.91%	-1.87%	1.08%
Wage (Low Skill Labor)	-0.47%	2.93%	-0.69%	-0.36%	-2.40%	0.23%
Panel B: Net Flow						
Labor (High Skill)	-	2.61%	-2.22%	-	4.18%	-2.57%
Labor (Low Skill)	-	0.58%	-0.04%	-	2.67%	-1.73%
Firm (High Skill Sector)	-	2.70%	-2.37%	-	3.99%	-1.25%
Firm (Low Skill Sector)	-	-2.13%	1.82%	-	2.08%	-0.88%
Panel C: Aggregate Welfare (by Destination)						
Welfare (High Skill Labor)	4.46%	17.15%	-0.98%	5.74%	22.68%	-1.52%
Welfare (Low Skill Labor)	-0.30%	3.53%	-0.73%	2.02%	10.23%	-1.50%
Total Welfare	1.23%	6.25%	-0.93%	2.75%	12.72%	-1.52%

- Unrestrictive Hukou relaxation generates larger welfare gains.
 - With nonrestrictive relaxation, everyone is better off (people who stay benefit from higher wages, people who
 move benefit from lower migration cost);
 - With skilled-biased policy, everyone in the destination city is better off, low-skill labor who stay in the origin city get worse off because of lower wages for low-skill workers.
 29/33

Counterfactual - Largest 20 Cities

	Biased		Unrestrictive			
	Overall	Relaxed	Unrelaxed	Overall	Relaxed	Unrelaxed
Panel A: Wage						
Wage (High Skill Labor) Wage (Low Skill Labor)	1.04% -1.89%	-7.02% 3.89%	4.56% -2.25%	3.66% -0.77%	-3.73% -0.84%	4.12% -0.77%
Panel B: Net Flow						
Labor (High Skill)	-	6.60%	-4.29%	-	8.96%	-8.38%
Labor (Low Skill)	-	0.22%	-0.13%	-	5.25%	-3.50%
Firm (High Skill Sector)	-	6.65%	-5.53%	-	6.98%	-5.30%
Firm (Low Skill Sector)	-	-5.21%	4.30%	-	6.17%	-5.09%
Panel C: Aggregate Welfare (by Destination)						
Welfare (High Skill Labor) Welfare (Low Skill Labor) Total Welfare	6.68% -0.10% 2.21%	18.94% 4.12% 7.08%	0.07% -2.38% -0.42%	6.06% 2.42% 3.01%	25.87% 14.80% 17.02%	-4.61% -4.24% -4.53%

• With nonrestrictive relaxation

- Everyone in the treated cities and who move to the treated cities is better off
- High-skill labor who stay in the untreated cities is better off
- Low-skill labor who stay in the untreated cities is slightly worse off

Counterfactual - Smallest 20 Cities

	Biased		Unrestrictive			
	Overall	Relaxed	Unrelaxed	Overall	Relaxed	Unrelaxed
Panel A: Wage						
Wage (High Skill Labor)	-0.77%	-12.13%	-0.06%	-0.57%	-7.41%	-0.14%
Wage (Low Skill Labor)	0.47%	9.09%	-0.07%	-0.30%	-2.82%	-0.14%
Panel B: Net Flow						
Labor (High Skill)	-	19.55%	-0.13%	-	20.91%	-0.15%
Labor (Low Skill)	-	-0.60%	0.01%	-	6.49%	-0.14%
Firm (High Skill Sector)	-	18.76%	-0.15%	-	19.58%	-0.16%
Firm (Low Skill Sector)	-	-15.03%	0.02%	-	13.24%	-0.13%
Panel C: Aggregate Welfare (by Destination)						
Welfare (High Skill Labor)	1.12%	26.06%	-0.19%	1.44%	34.34%	-0.29%
Welfare (Low Skill Labor)	0.36%	8.44%	-0.06%	0.43%	13.84%	-0.28%
Total Welfare	0.44%	11.96%	-0.16%	0.62%	17.94%	-0.29%

- We are the first to provide a full picture of the dynamics of Hukou policy in the past three decades and document its *distributional* effect on entrepreneurial activity.
- Reduced-form evidence informs the importance of policy heterogeneity:
 - Skill-biased policy changes change the composition but not the total number of entrepreneurs; Nonrestrictive policy changes spur overall entrepreneurship.
 - Better-performing entrepreneurs are moving from smaller cities to larger ones.
 - Entrepreneurs in low-skill industries are hurt by skill-biased policy change but benefit from nonrestrictive policy change; Entrepreneurs in high-skill industries benefit from both, and more from nonrestrictive ones

Conclusion

- We build a spatial equilibrium model following Bryan and Morten (2019) and Fajgelbaum et al. (2019) to illustrate our key mechanism: labor sort in response to the reduction in mobility cost, and firms sort with labor.
 - We add to Fajgelbaum et al. (2019) heterogeneous worker type and policy-induced worker type-specific labor mobility cost.
 - We add to Bryan and Morten (2019) firm location choice (and thus endogenous labor demand)
- The relaxation of Hukou restrictions may contribute to greater regional inequality, but improves overall efficiency and welfare.
- In another related project, we document the long-term reversal of the trend— better entrepreneurs are more likely to return to their hometowns.

An Example of Biased Policy (back)

- Foshan, a manufacturing-agglomeration city in Guangdong (*"Decision on Reform of Household Registration System"* June 1, 2004)
- Approval of local household registration (Hukou) if one of the following criteria is met:
 - Public sector employees: family all in.
 - With above college education (male<50; female<45): one in.
 - Parents/Children/Couples (at least one is local resident)
 - **②** Entrepreneur with investment here and paying tax > 10,000 RMB: family all in
 - Q Running business or be employed continuously for 7 years: one in
 - **(2)** Owner of a firm with registered capital of more than 200,000 RMB: family all in
 - **(**) Commercial housing purchase activities: family all in
 - ۵) ...

- Tongling, a middle-size city in Jiangxi (*"Decision on Advancing Reform of Household Registration System"* September 7, 2017)
- Overall relaxation of Hukou restrictions.
- The document specifically emphasizes that no investment, housing purchase, skill-based point system, or social security status should be used as conditions for local Hukou eligibility.

Skill distribution

Notes: This figure depicts the histogram of the industry-level skill intensity distributions for firms established by local entrepreneurs, migrant entrepreneurs, and movers separately. Skill intensity is defined at the 3-digit industry level as the % of skill workers in the total labor force. (back)

Who Are Responding to Hukou Reforms?

Y:1(Established by Migrant Entrepreneur)

	D:log(Destination GDP)	D:log(Home GDP)	D:log(Previous GDP)	D:Previous Percentile
Hukou_skill	-0.330***	0.0848***	-0.0549***	0.0503***
	(0.00358)	(0.00269)	(0.00609)	(0.00219)
Hukou_skill*D	0.0472***	-0.127***	-0.00312***	0.00127***
	(0.000474)	(0.000362)	(0.000763)	(0.000395)
Hukou other	-0.275***	0.127***	0.0482***	0.0205***
	(0.00367)	(0.00268)	(0.00602)	(0.00209)
Hukou other*D	0.0373***	-0.00901***	-0.00208***	0.00178***
—	(0.000467)	(0.000351)	(0.000736)	(0.000374)
Hukou_nonrestrictive	0.0470***	0.444***	0.479***	0.0844***
—	(0.00276)	(0.00173)	(0.00381)	(0.00139)
Hukou nonrestrictive*D	0.00223***	-0.0485***	-0.0525***	0.00776***
—	(0.000339)	(0.000223)	(0.000451)	(0.000216)
D, Log(Asset)	Yes	Yes	Yes	Yes
City, Year FE	Yes	Yes	Yes	Yes
Observations	27,456,853	27,226,186	7,132,888	7,411,193
R-squared	0.259	0.334	0.215	0.208

• Hukou reforms in large cities are more likely to attract better-performing entrepreneurs from small cities

The Performance of Migrant Entrepreneurs

	log(Revenue)	log(Employment)	log(Profit)	TFP	log(R&D)	log(Wage)
Migrant	0.100***	0.00645***	0.0204***	0.0916***	0.0619***	-0.0128***
	(0.00495)	(0.00159)	(0.00402)	(0.00221)	(0.00312)	(0.00114)
Constant	7.037***	3.064***	4.993***	-0.0827***	0.426***	-2.970***
	(0.00249)	(0.000871)	(0.00218)	(0.00114)	(0.00166)	(0.000620)
C, I, Y, H FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,144,462	2,858,838	1,549,195	1,452,648	1,528,346	2,693,550
R-squared	0.242	0.393	0.329	0.134	0.184	0.237

• Migrant entrepreneurs perform better!

skill

Household

Households of type $s \in \{H, L\}$ choose their city d, employer $\omega \in \Omega_v, v \in \{h, l\}$, consumption of h-type product Q_h and l-type product Q_l to maximize

$$U_{ods\omega} = b_{d\omega} a_d (1 - \tau_{od}^s) (Q_h)^{\beta} (Q_l)^{(1-\beta)}, \ Q_\nu = \left[\int_{\omega \in \Omega_\nu} (q_\nu(\omega))^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma-1}}$$

- $b_{d\omega}$ is an household-specific idiosyncratic preference shock for city d and employer ω ;
- $q_{\nu}(\omega)$ is the production of type ν good by employer ω
- Q_v aggregates all product varieties w available in sector v, using a constant elasticity of substitution $\sigma > 1$;
- $\beta \in (0, 1)$ is the expenditure share on h-type product;
- Households draw the set of idiosyncratic shocks $b_{d\omega}$ from a nested Fréchet distribution.

Household Location Choice

Each origin is endowed with a fixed mass of labor with skill level s, denoted by \bar{L}_{os} . Households locate to maximize their indirect utility which is a function of wage and mobility cost.

$$\frac{L_{ods}}{\bar{L}_{os}} = \left(\frac{(1-\tau_{od}^s)W_{ds}}{\tilde{W}_{os}}\right)^{\xi}$$

The implied regional labor supply, given by the probability that an agent of type s from origin o chooses city d, equals to:

$$L_{ds} = \sum_{o} L_{ods} = \sum_{o} \bar{L}_{os} \Big(\frac{(1 - \tau_{od}^s) W_{ds}}{\tilde{W}_{os}} \Big)^{\xi}$$

- L_{ods} is the measure of households of type s from origin o that choose city d; L_{ds} is the measure of households of type s that choose city d
- W_{ds} is the regional skill-specific ideal wage index, aggregating the employer-specific wages $w_{ds}(\omega)$

•
$$\tilde{W}_{os} = \left(\sum_{d} \left((1 - \tau_{od}^s) W_{ds} \right)^{\xi} \right)^{\frac{1}{\xi}}$$

h-Type Firms

There exists a fixed mass of firms M_h which must decide in which city to locate. Assuming that these firms are heterogeneous in terms of their productivity across locations, which are mainly affected by two factors: labor cost and agglomeration effect.

• Cobb-Douglas technology:

$$q_{dh}(\omega) = \varphi_{dh}(\omega) l_{dhH}^{\alpha} l_{dhL}^{1-\alpha}$$

where $\varphi_{dh}(\omega) = M_{dh}^{\rho} z_{dh}(\omega)$ is firm-specific productivity.

- M_{dh} is the mass of h-type firms choose to locate in city d
- ρ captures the agglomeration effect
- $z_{dh}(\omega)$ is firm-specific idiosyncratic productivity shock for city d and firm ω of h-type
- σ captures the market power of the firm in product market

Conditional on the firms' location choice, they solve the maximization problem:

$$\max_{l_{dH}, l_{dL}} P_h Q_h^{\frac{1}{\sigma}} \left(\varphi_{dh}(\omega) l_{dhH}^{\alpha} l_{dhL}^{1-\alpha} \right)^{\frac{\sigma-1}{\sigma}} - \sum_{s \in \{L, H\}} W_{ds} L_{ds}^{-\frac{1}{c}} l_{dhs}^{1+\frac{1}{c}}$$

• $P_h Q_h^{\frac{1}{\sigma}}$ and $W_{ds} L_{ds}^{-\frac{1}{\epsilon}}$ captures the market power of the firm in output and labor market.

For simplicity, assume that firms in the l-sector only employ low-skill worker. The production function of firms in the l-sector is given by

 $q_{dl}(w) = \varphi_{dl}(w) l_{dl}$

Then firm's maximization problem is.

$$\max_{l_s} P_l Q_l^{\frac{1}{\sigma}} (\varphi_{dl} l_{dl})^{1-\frac{1}{\sigma}} - W_{dL} L_{dL}^{-\frac{1}{e}} l_{dl}^{1+\frac{1}{e}}$$

Firm Location Choice

A fixed mass of firms in each sector decide in which city to locate to maximize the profit. **h-sector**: The fraction of firms located in city d is thus

$$\frac{M_{dh}}{M_{h}} = \left(\frac{\gamma_{dh}}{\gamma_{h}}\right)^{\frac{\varepsilon}{\frac{1}{\psi}}\frac{\sigma-1}{\sigma}}$$

where

$$\gamma_{dh} = C_{dh}^{-\frac{1-\psi}{\psi}} M_{dh}^{\frac{\rho}{\psi}\frac{\sigma-1}{\sigma}}, \ \gamma_h = \left(\sum_{d=1}^N \gamma_{dh}^{\frac{\varepsilon}{\psi}\frac{\sigma-1}{\sigma}}\right)^{\frac{1}{\psi}\frac{\sigma-1}{\sigma}}$$

l-sector:

$$\frac{M_{dl}}{M_{l}} = \frac{(C_{dl})^{\frac{(1-\psi)\varepsilon\sigma}{1-\sigma}}}{\sum_{i} (C_{il})^{\frac{(1-\psi)\varepsilon\sigma}{1-\sigma}}}$$

A general equilibrium of this economy consists of distributions of workers and firms $\{L_{ods}, M_{dv}\}_{o,d=1}^{N}$, $s \in \{H, L\}$, $v \in \{h, l\}$, aggregate quantities $\{Q_h, Q_l\}$, wages $\{W_{ds}\}_{o,d=1}^{N}$, $s \in \{H, L\}$ and final good prices $\{P_h, P_l\}$ such that:

- i) Firms optimize on their location choice and labor demand, given productivity draws and labor cost;
- ii) Workers make consumption and location decisions optimally, given migration cost, preference draws, and wage;
- iii) Final good markets clear in every sector;
- iv) Labor market clears in every city and skill type.

Impact of Labor Mobility Cost in Simplified Model

Proposition

Consider an economy with two cities. Migration costs is denoted as $\tau = [\tau_{AH}, \tau_{AL}, \tau_{BH}, \tau_{BL}]$

(a) (The effect of skill-biased hukou policy) For any given level of τ_{AL}, τ_{BH}, τ_{BL}, we have ^{∂L_{AH}}/_{∂τ_{AH}} < 0, ^{∂L_{AL}}/_{∂τ_{AH}} < 0, ^{∂M_{AH}}/_{∂τ_{AH}} < 0, ^{M_{AL}}/_{∂τ_{AH}} > 0, ^{W_{AL}}/_{∂τ_{AH}} < 0, and the sign of ^{W_{AH}}/_{∂τ_{AH}} is not determined.
(b) (The effect of no-restriction hukou policy) For any given level of τ_{BH}, τ_{BL}, assume that τ_{AH} = τ_{AL} = τ_A, we have ^{∂L_{AH}}/_{∂τ_A} < 0, ^{∂L_{AL}}/_{∂τ_A} < 0, ^{∂M_{AH}}/_{∂τ_A} < 0, ^{∂M_{AH}}/_{∂τ_A} < 0, ^{AM_{AH}}/_{∂τ_A} < 0, ^{M_{AL}}/_{∂τ_A} < 0, ^{M_{AL}}/_{∂t_A} < 0, ^{M_{AL}}/_{At_A} < 0, ^{M_{}}

Impact of Labor Mobility Cost in Simplified Model

Proposition

Consider an economy with two cities. Migration costs is denoted as $\tau = [\tau_{AH}, \tau_{AL}, \tau_{BH}, \tau_{BL}]$. Under the following two scenarios: 1) For any given level of $\tau_{AL}, \tau_{BH}, \tau_{BL}$; 2) For any given level of τ_{BH}, τ_{BL} , assume that $\tau_{AH} = \tau_{AL} = \tau_A$; we have $\frac{\partial L_{AH}}{\partial \tau_{AH}} < \frac{\partial L_{AL}}{\partial \tau_{AH}} < \frac{\partial M_{AL}}{\partial \tau_{AH}}$.

Model Simulation (Low Agglomeration)

Model Simulation (High Agglomeration)

Model Simulation - Welfare equilibrium

(a) Welfare- No restriction

(b) Welfare- Skill bias

Figure 6: The Effect of Hukou Policy Relaxation on Labor Welfare

Calibrated Production Technology High-skill Labor Share Distribution

Notes: The figure plots the distribution of the calibrated production function parameter α .

Calibrated Skill-Specific Wage Distribution

(a) High Skill

(b) Low Skill

Calibrated Skill-Specific Migration Cost Distribution (2010)

(a) High Skill

(b) Low Skill

Estimated Migration Cost Reduction

	log(Migration cost_Low skill)	log(Migration cost_High skill)
Nonrestrictive Hukou	-0.212**	0.0448
	(0.107)	(0.301)
Skilled-biased Hukou Policy	0.0589	-0.190**
	(0.116)	(0.083)
Constant	3.064***	2.112***
	(0.0204)	(0.0338)
City FE	Yes	Yes
Year FE	Yes	Yes
City trend	Yes	Yes
Observations	1,419	1,167
R-squared	0.705	0.682

Migration Elasticity

Panel A: Labor Mobility Elasticity					
	OLS	IV			
log(Destination real income)	0.125***	0.157***			
	(0.009)	(0.022)			
Origin-dest. city FE	Yes	Yes			
Cohort FE	Yes	Yes			
Skill FE	Yes	Yes			
Observations	133958	133958			
R2	0.473	0.452			
	OLS	IV			
Panel A: Firm Mobility Elasticity					
log(Labor cost)	-0.193***	-0.363***			
	(0.069)	(0.098)			
City FE	Yes	Yes			
Industry FE	Yes	Yes			
Observations	35020	35020			
R2	0.739	0.711			