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'LLMs in China

“China will have their own LLM that’s different from the rest of the world.”

—Sam Altman, Al for Good Global Summit, May 2024.
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Why Chinese?

= Importance

0 Substantial information about the second largest economy.

= Uniqueness

o Ideographic, materially different from phonetics.

o Difficulty in accurately identify word boundaries based on

surrounding context.
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= Necessity

Q

Previous NLP methods that ignore word boundaries, order and
cross-word relations miss substantial information in Chinese.

LLMs can handle Chinese by learning contextualized
representations from character sequences via Transformer.




Why Chinese Stock Market?

= Previous studies focus on the developed markets, but Chinese stock
market significantly differs from those developed.

0 Retail investors are prevalent (Jones et al., 2024) and have
relatively low financial literacy (Song, 2020; Titman et al., 2022),
facing challenges in processing and trading on public news.

o There could be substantial under-processed information in public
news for LLMs to extract.

= Chinese stock market is still in a developing phase, with gradually
improving information efficiency (Carpenter et al., 2021).

0 LLMs could help accelerate this process and improve etficiency.

0 For other emerging markets with similar characteristics, there
could be important academic, industrial and regulatory
implications.




Research Questions

= Can LLMs process public news and predict stock returns in China?

0 By answering this question, we are among the first to use a
representative and influential series of Chinese LLMs to
effectively extract information from a comprehensive set of
Chinese news.

= Do signals from LLMs help the price discovery process and
contribute to market efficiency?

0 By answering this question, we are providing novel insights for
Al potentially changing the information transmission dynamics,
and helping investors (particularly retail investors) making
decisions in the future.




Literature Review

= Textual analysis

0 Return forecasting: Tetlock et al. (2008), Loughran and McDonald
(2011), Jegadeesh and Wu (2013), Tetlock (2014), Loughran and
McDonald (2016), Gentzkow et al. (2019), and Ke et al. (2019).

0 Other applications: Manela and Moreira (2017), Bybee et al.
(2023a), Bybee et al. (2023b).

= LLMs provide new possibilities to make use of financial text.
o U.S. and international markets: various LLMs, such as ChatGPT.

= Kim and Nikolaev (2023), Lopez-Lira and Tang (2023),
Beckmann et al. (2024), Chen et al. (2024a), Chen et al. (2024Db).

0 China: mainly into BERT-based models.
= Jiang et al. (2024), Zhou et al. (2024).




Data

= Sample: January 15t 2008 to December 315t 2023.
= Returns, stock characteristics, accounting data: WIND and CSMAR.
= News data: ChinaScope SmarTag database.
0 28 million deduplicated raw news articles in Chinese.
= Covering 5,255 stocks (100% of the A-share stocks).
0 Source: 966 registered internet news providers.

= Financial medias: Eastmoney, Tonghuashun Finance, Sina
Finance, China Securities Net, etc. (47.1%)

=  Government websites: State Council, NDRC and local
government official websites. (33.4%)

= WeChat official accounts: brokerages, funds... (19.5%)

o For every article: title, full content, source, timestamp, stock id.




Selection of L1LMs

= To select representative and influential LLMs, we use 3 criterion:

o Trained on Chinese texts;

o Fully open-sourced;

= Complete weights (learned parameters), and detailed

technical documentation of the model structure.

0 Influential, well adopted.

Influence in the academia: commonly adopted by existing
studies on LLM’s finance application.

Influence in the industry: approval from the Cyberspace
Administration of China.




Selection of L1LMs

LLMs Name Our version Open-sourced
Google Chinese version base
BERT BERT Nov. 2018
Chinese adaptation XLM-
RoBERTa RoBERTa Dec. 2019
. FINBERT Chinese FINnBERT Valuesimplex Oct. 2020
Individual Most recent open-sourced
LLM Baichuan version: Baichuan2-7B Jun. 2023
ChatGLM 16\/11305t recent version: ChatGLM3- Mar. 2023
InternLM 1;/][3ost recent version: InternLM2- Jun. 2023
Ensemble Ensemble We take average of the individual \
LLM LLMs’ signals.




Article-Level Representation
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LLMs

(e.g. Baichuan)
—>

Tokenization

71 tokens

AETI

(Ping An)

RAT
(Bank)

N
(Announce)

Fralk

_\_ (Operate) /

LLMs
(e.g. Baichuan)l
>

Embedding

vector length 4096
Average over 1 all tokens

Xi¢

LLM transforms the news into a numerical vector, the “article-level
representation”, summarizing news content and semantic information.
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'Empirical Modelling

= For the first signal, news tone, estimate logistic model:

x! B

E(yi,t+1|xi,t) = (1)

1+ e¥itP

0 Y;r+1: positive return dummy, takes the value of 1 when the next
day’s return rj .41 > 0, otherwise it’s 0.

o x;.: LLM’s article-level representation for stock i on day ¢.

= For the second signal, return forecast, estimate linear model:
E(ri,t+1|xi,t) = xi’,te (2)
0 7Tj¢4q: return of stock 7 on day t+1.

o x;.: LLM’s article-level representation for stock i on day ¢.
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Estimation Method

= We set training sample 2008-2018, testing sample 2019-2023.

o Expanding training window approach: for testing year 2019,
2008-2018 are training sample; for testing year 2020, 2008-2019
are training sample; ...

= In training sample

o Estimate f by minimizing the cross-entropy loss function with L2
penalty.

0 Estimate 6 by minimizing the MSE loss function with L2 penalty.
= In testing sample

, —~
eXith

0 Construct predicted news tone: y; 141 = — 5 -
1+e” it

0 Construct return forecast: 7; ;11 = x{,te .
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Out-of-Sample Fitness

= Out-of-sample accuracy of the news tone
0 Accuracy: percentage of correct direction predictions.
0 Model performs better when the accuracy is higher.

BERT FInBERT RoBERTa Baichuan ChatGLM InternLM  Ensemble

52.71% 52.77% 52.63% 52.37% 51.93% 52.08% 52.74%

= Out-of-sample correlation between real returns and forecasts

0 Model performs better when the correlation is higher.

BERT FinBERT RoBERTa Baichuan ChatGLM  InternLM  Ensemble

1.62% 1.94% 1.80% 1.99% 1.52% 1.73% 1.95%
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‘ Q1. LLM’s Return Predictive Power
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= Portfolio Sorting
0 Open-to-open timeline.
= Allow for the timeliest use of most news arriving overnight.
o For news that occur on day O:
= Compute predicted news tone and return forecasts for day 1;
= Build positions at the open on day 1, hold for 1 day;
0 Long top 10% stocks, and short bottom 10% stocks.
s  Rebalance on daily basis.
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Return Prediction: Raw Returns

= Long minus short portfolio returns, sorted by news tones.

Value-weighted Equal-weighted
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Return Prediction: Alphas

= (CH4-adjusted returns (annualized) for portfolios sorted by news

tones.
VW EW
Long minus Long minus
Model Long Leg Short Leg Short Long Leg Short Leg Short
Alpha t-Stat Alpha t-Stat | Alpha| t-Stat Alpha t-Stat Alpha t-Stat| Alpha| t-Stat
BERT 918% 154 -38.22% -5.28 (47.40%| 4.97 16.33% 3.74 -49.79% -9.41 |66.13% 9.83

FiInBERT 7.67% 120 -43.77% -5.61 [51.44%| 4.92 24.68% 5.09 -54.26% -8.47 |78.95% 9.68
RoBERTa 14.56% 2.23 -39.89% -5.33 (54.45%| 522 20.32% 4.61 -54.89% -9.42 |75.22% 10.25
Baichuan 22.92% 3.66 -46.99% -5.92 |69.90%| 6.52 32.42% 6.75 -54.68% -8.64 (87.09% 10.91
ChatGLM 13.60% 2.23 -27.90% -4.13 (41.50%| 4.23 22.53% 4.96 -44.70% -8.31 |67.23% 9.41
InternLM 11.68% 1.85 -26.46% -3.70 (38.14%| 3.83 30.02% 6.93 -45.38% -7.57 |75.41% 10.09
Ensemble 15.08% 2.41 -51.67% -6.80 [66.75%| 6.42 30.78% 6.49 -60.54% -10.03|91.32%| 11.76
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Word Cloud

= Positive cloud = Negative cloud

o #JEh: Stimulus a0 #4F: Shareholder sales
a0 %3 Investment o 5 #: Loss

a B3 K: Year-on-year growth o  #F: Disclosure

a a
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LLM Signals’ Information Content

= What's the specific content that LLMs discover from public news?

o Tetlock et al. (2008) suggest news conveys important
fundamental information about firms’ future performance.

= Consider firms’ future earnings surprises (SUE).
SUE; t41 = ag + a,LLM Signal; ; + a,Controls; ; + u; t11 3)

0 SUE;, = —*

Lt _ . .
L A; .= year-over-year change in quarterly earnings.

= Positive a;: The higher the signals, the higher the earnings surprises.

Dep.Var Next-day SUE
News Tones Return Forecast
Coef t-Stat Coef t-Stat
LLM Signal 4.63*** 8.65 135.37*** 6.95
Controls Yes Yes

Adj.R2 5.38% 6.81%
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Cross-sectional Evidence

80%

40%

0%

Economic intuition: even if the fundamentals are revealed, market’s
ability to incorporate information is subject to information frictions.

The benefits of LLM-based news processing are likely to be more
pronounced when these frictions are higher, e.g.:

o higher retail inattention creating more room for mispricing;
0 less transparent information environments;
0 news harder to understand.

Retail Holdings Size News Complexity
120% 120%
80% 80%
40% I 40% .
0% 0%
Low Retail High Retail Large-cap Small-cap W/ Uncommon W/O/Uncommon

Ownership ~ Ownership Characters Characters

19



Assimilation Speed

= How fast does news assimilate into prices?

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Q

2 days on aggregate, slower (faster) for smaller (bigger) firms.

Aggregate

12345678 910

1.2

1.0

0.8

0.6

0.4

Small-cap

12345678 910

1.2

Large-cap

123456738910
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LLMs and Trading Dynamics

=  When news becomes public, it is likely that sophisticated investors
may correctly interpret and swiftly act upon it, whereas less
sophisticated investors cannot.

= Consider four investor groups varying in trade sizes: small (<50k),
medium (50~200k), large (200k~1 mil), extra-large (>1 mil) trades.

) . . . G Buy{,—Sellf,
o Trading direction (order imbalance): 0ib;’, = —— :

BuyfﬁSellEt )

Dep.Var Next—day .Next-d:ay Next—day . Next-day

Oib(Small) Oib(Medium) Oib(Large) Oib(ExtralLarge)
LLM News Return News  Return News Return News  Return
Signal tone  forecast tone  forecast tone  forecast tone  forecast
Coef -4.62 -67.68 -0.43 112.31 4.43 190.82 6.49 145.93
t-Stat -8.26 -5.08 -0.82 8.67 5.39 9.61 8.24 7.62
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Adj.R2 5.12% 5.09% 1.81% 1.83% 0.25% 0.24% 0.01% 0.00%
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Transaction Costs

= After-fee performances: deduct a stamp fee of 10.0 bps (upon
selling) and commission fee of 1.5 bps (upon both buying and
selling) for every transaction.

Long Leg Long minus Short

: Transact Transact
Group Holding | Alpha | t-Stat Turnover Costs Alpha | t-Stat Turnover Costs

Small 1-day |3.83% 0.49 95.26% 35.72% | 49.13% 4.12 92.29%  34.61%
ca 5-day [16.58% | 1.92 19.35% 7.26% 35.57% 4.92 19.05% 7.14%
P 10-day [17.60% | 2.36 9.70% 3.64% 22.73% 4.03 9.59% 3.60%

VW Large 1-day |-9.69% | -1.40 89.78% 33.67% | -0.10% | -0.01 90.14%  33.80%
cap 5-day |5.35% 0.68 18.48% 6.93% 8.68% 1.22 18.66% 7.00%

10-day | 7.27% 1.07 9.31% 3.49% 7.30% 1.27 9.41% 3.53%

Small 1-day |12.06% | 1.50 95.15% 35.68% [52.11% | 4.29 91.99%  34.50%

cap 5-day (22.47% | 2.53 19.34% 7.25% |4217%| 5.26 19.00% 7.13%

EW 10-day [21.62% | 2.82 9.70% 3.64% 27.78% | 4.52 9.57% 3.59%

1-day |-4.00% | -0.79 92.28% 34.61% | 15.57% 1.96 90.62%  33.98%
ca 5-day | 7.58% 1.01 18.94% 7.10% 16.82% 3.03 18.79% 7.05%
P 10-day | 8.52% 1.26 9.52% 3.57% 11.50% 2.49 9.48% 3.56%

Large
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Conclusions

= Return prediction: using a comprehensive set of Chinese news
articles, we find LLMs’ signals can predict returns in China.

= LLMs signals contribute to price discovery process.
o LLM signals contain information on future firms fundamentals.
o Higher prediction when higher information frictions.
o News assimilation speed: 2 days in general.

o Different investors trade oppositely on LLM signals.

= Al could be a useful tool for helping investors process information,
particularly for small retail investors and in emerging markets.
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