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How Do Asset Prices Distill Investors’ Information?

“Information leakage” via prices and quantities:

▶ Trading prices, e.g., Kyle (1985).

▶ Disclosure: Trade quantities are disclosed/detected:
▶ Full disclosure, e.g., insider trading laws (Huddart et al.,

2001);
▶ Partial disclosure, e.g., regulatory filings by mutual funds,

ETFs, and hedge funds;
▶ Detection of the informed investor’s trades (Yang and Zhu,

2020).

▶ We model both
▶ One informed trader
▶ Sequential private information
▶ Post-trading (partial) disclosure
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Main Results: Kyle Meets Friedman

▶ 2-P Model ⇒ Info-usage Problem⇔Consumption Problem
▶ information usage → consumption
▶ information arrival → income
▶ cumulated unused information → wealth

▶ Friedman (1957): permanent income hypothesis
▶ Rainy days, Consumption smoothing, Precautionary saving
▶ Ct depends on the expectation of lifetime income.

▶ Trading, price discovery, and liquidity
▶ Trading depends on current and expected future info

▶ Why can we transform a 2-P model into a 1-P one?
▶ The insider’s commitment value is zero
▶ 2-P equilibrium ⇒ 1-P optimization
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Model
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Setup

▶ Kyle (1985) is extended with
▶ Post-trading disclosure (Huddart et al., 2001)
▶ Sequential information arrivals

▶ N trading periods: n = 1, ..., N

▶ One risky asset with final liquidation value, F ∼ N (0, σ2
F ),

F ≡
N∑

n=1

Fn

where Fn ∼ N (0, σ2
Fn

) and is serially independent.
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Players and Information

▶ Two liquidity demanders:
▶ One risk-neutral informed investor: Insider

▶ observes Fn in period n
▶ trades xn shares

▶ Noise traders demand un ∼ N (0, σ2
u)

▶ Wrong beliefs; hedging; ESG; liquidity (love): private value

▶ One liquidity supplier: Risk-neutral market maker
▶ observes the aggregate order flow: yn = xn + un

▶ sets the trading price Pn

▶ Bertrand competition or representative aggregation of the
rest of the market
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Post-Trade Disclosure

▶ The insider must disclose after his trade
dn = xn + ϵn, with ϵn ∼ N (0, σ2

ϵ )
▶ Perfect disclosure (HHL, 2001): σ2

ϵ = 0
▶ Imperfect disclosure: σ2

ϵ > 0
▶ Kyle (1985): σ2

ϵ = ∞

▶ Baseline model: σ2
ϵ = 0

▶ The market maker’s information set in period n:

IM
n ≡ {y1, ..., yn, x1, ..., xn−1}

IM
n+ ≡ {y1, ..., yn, x1, ..., xn−1, xn}

▶ HHL (2001) is a special case
▶ σF1 = σF .
▶ σFi = 0, for i = 2...N.
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Decisions in Period n

▶ At the trading time, the market maker sets the price to

Pn = E[F |IM
n ],

After disclosure, the market maker adjusts the price to

P ∗
n = E[F |IM

n+].

▶ The informed investor:

max
xn,...,xN

E

 N∑
j=n

πj |II
n

 ,

where II
n ≡ {F1, ..., Fn, P1, ..., Pn−1, P

∗
1 , ..., P

∗
n−1}.
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Timeline

n−

The insider

observes Fn.

n

• An insider and noise
traders submit xn and un

respectively;

• Market maker observes

yn = xn + un, sets price as

Pn, and fills all demands.

n+

• The insider announces
publicly xn and market
maker updates the price
to P ∗

n ;

• If n = N , F is an-

nounced.
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Equilibrium and Equivalence
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Linear Equilibrium
▶ Conjecture and verify a linear equilibrium:

xn = βn(

n∑
i=1

Fi − P ∗
n−1) + zn,

Pn = P ∗
n−1 + λnyn,

P ∗
n = P ∗

n−1 + γnxn,

where zn ∼ N (0, σ2
zn), P

∗
0 = 0.

▶ {βn, λn, γn, σzn} are determined in equilibrium.

▶ Pure strategy: σ2
zn = 0, fully reveals the insider’s info

▶ Mixed strategy: σzn > 0, saves info for future use

▶ k2n ≡ V ar(P ∗
n − P ∗

n−1): info used in period n
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Equilibrium Characterization

Theorem (Proof)

There is a unique linear equilibrium with,

βn =
knσu

Σn + k2n
, λn =

kn
2σu

, γn =
kn
σu

, σ2
zn =

Σn

Σn + k2n
σ2
u, (1)

where Σn =
n∑

i=1
σ2
Fi

−
n∑

i=1
k2i ,

and {k1, · · · , kN} ∈ RN
≥0 are the unique solution to

max
{k1,··· ,kN}∈RN

≥0

(k1 + ...+ kN ), (2)

subject to

n∑
i=1

k2i ≤
n∑

i=1

σ2
Fi
, for n = 1, ..., N. (3)
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Equivalence to a Consumption-Saving Problem

▶ Reduced to a 1-player Info Usage Problem:

max
{k1,··· ,kN}∈RN

≥0

k1 + ...+ kN ,

s.t.

n∑
i=1

k2i ≤
n∑

i=1

σ2
Fi
, for n = 1, ..., N.

▶ Equivalent to a Consumption Problem:

max
{C1,··· ,CN}∈RN

≥0

u(C1) + ...+ u(CN ),

s.t.

n∑
i=1

Ci ≤
n∑

i=1

Yi, for n = 1, ..., N.

where u(C) =
√
C, CRRA with RRA = 1/2.
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Transformation by Relabeling

Trading game with disclosure Consumption-saving problem

Information usage k2
n Consumption Cn

Expected profits knσu/2 Utility
√
Cn

Information endowment σ2
Fn

Income Yn

Unused information amount Σn Wealth Sn

Asymmetric information transfer Borrowing constraint
k2
n ≤ Σn−1 + σ2

Fn
Cn ≤ Sn + Yn

• If k2
n < Σn−1 + σ2

Fn
, “mixed” • If Cn < Sn + Yn, “save”

• If k2
n = Σn−1 + σ2

Fn
, “pure” • If Cn = Sn + Yn, “consume all”
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Kyle Meets Friedman
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Permanent Income Hypothesis (Friedman, 1957)

1. Saving for rainy days

2. Consumption smoothing

3. Precautionary saving

▶ Implications on the trading model
▶ Asset prices
▶ Informativeness
▶ Market liquidity
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1: Saving for Rainy Days

▶ Saves more today if expects to be poorer tomorrow

▶ Save more info today if expects less info tomorrow

▶ Illustrated in the case of N = 2.

▶ Saving for rainy days: k21 is increasing in σ2
F2
.

▶ Use all info if expecting more info next period.
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The Case of N = 2
▶ Case 1: If σF1 > σF2 , (σF2 = 0 in HHL):

σ2
z1 =

σ2
F1

− σ2
F2

2σ2
F1

σ2
u (mixed), σ2

z2 = 0 (pure),

β1 =
σFσu√
2σF 2

1

, β2 =

√
2σu
σF

, k1 = k2 =

√
σ2
F1

+ σ2
F2

2
,

λ1 = λ2 =
σF

2
√
2σu

, γ1 = γ2 =
σF√
2σu

.

Saving for rainy days: k21 is increasing in σ2
F2
.

▶ Case 2: If σF1 ≤ σF2 ,

σ2
z1 = σ2

z2 = 0 (pure strategy),

βi =
σu
σFi

, λi =
σFi

2σu
, γi =

σFi

σu
, ki = σFi , for i = 1, 2.

Consume everything if expecting to be rich tomorrow.
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2. Consumption Smoothing

Information smoothing

▶ In equilibrium, {k1, · · · , kN} are the unique solution to

min
k1,··· ,kN

(k1 − k)2 + ...+ (kN − k)2,

s.t.

n∑
i=1

k2i ≤
n∑

i=1

σ2
Fi
, for n = 1, ..., N − 1,

N∑
i=1

k2i =
N∑
i=1

σ2
Fi
,

where k ≡ (k1 + ...+ kN )/N .

▶ This is equivalent to smoothing λ1, ..., λN .
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3. Precautionary Saving

▶ Save more today if expecting more uncertainty tomorrow

▶ Save more info today if expecting more uncertainty

▶ Illustrated in the case of N = 2:

σ2
F2

=

{
σ2
F2

+∆, with probability 1
2 ,

σ2
F2

−∆, with probability 1
2 .

▶ Saving for rainy days:
∂k21
∂σ2

F2

> 0

▶ Precautionary saving:
∂k21
∂∆ < 0
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What Is Behind This
Transformation?
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Answer: The insider’s commitment value K is zero.

▶ 2-P game with commitment ⇐⇒ 1-P game.

▶ K = 0 ⇐⇒ Eq. w.o. Comm. = Eq. w. Comm.

▶ 2-P equilibrium ⇒ 1-P problem

Further results:

▶ In our baseline model: K = 0

▶ 5 additional cases
▶ Time varying noise trading: K = 0.
▶ Potential information leakage: K = 0.
▶ Partial disclosure: K = 0 case, K > 0 case.
▶ Continuous-time model: K = 0.
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Commitment Game

Reformulate the game by changing the insider’s strategy space:

▶ In period 0, the insider commits to linear trading strategy:

xn = βn(

n∑
i=1

Fi − P ∗
n−1) + zn, with zn ∼ N (0, σ2

zn)

▶ In period 0, the insider chooses {βn, σzn}n
▶ For example, predetermined plans implemented by

algorithms
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Time-varying Noise Trading Intensity

▶ Noise trading intensity varies over time σ2
ui

▶ (σ2
Fi
, k2i , Σi) → (Yi, Ci, Si): nominal quantities.

▶ Price level: pi ≡ 1/σ2
ui

max
Cn,··· ,CN

N∑
i=1

u(Ci/pi),

s.t.

n∑
i=1

Ci ≤
n∑

i=1

Yi, for n = 1, ..., N.

24



Potential Information Leakage

▶ Information is leaked with a probability q each period

▶ (σ2
Fi
, k2i , Σi) → (Yi, Ci, Si)

max
{Cn,··· ,CN}

N∑
i=1

qi−1u(Ci),

s.t.

n∑
i=1

Ci ≤
n∑

i=1

Yi, for n = 1, ..., N.
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Continuous-time Limit

▶ Continuous-time limit as trading frequency approaches ∞

▶ (σ2
F (t), k

2(t), Σ(t)) → (Y (t), C(t), S(t)).

max
C(t)≥0

∫ 1

0
u(C(t))dt,

s.t. C(t)dt ≤ S(t) + Y (t)dt,

dS(t) = (Y (t)− C(t))dt.
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Partial Disclosure

▶ In period n, MM gets dn: dn = xn+ ϵn, with ϵn ∼ N (0, σ2
ϵ )

▶ Huddart et al. (2001): σϵ = 0.
▶ Kyle(1985): σϵ = ∞.

▶ N = 2 and σϵ = ∞, K > 0, transformation doesn’t work

▶ σϵ is small: K = 0 and (σ2
Fi
, k2i , Σi) → (Yi, Ci, Si),

max
{Cn,··· ,CN}

N−1∑
i=1

u(Ci) + ρu(CN ),

s.t.

n∑
i=1

Ci ≤
n∑

i=1

Yi, for n = 1, ..., N,

where ρ ≡
√

σ2
u

σ2
u+σ2

ϵ
.
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What Drives Commitment Value in
Kyle-type Models?
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▶ Our exercises suggest:
▶ 0 commitment value ⇒ equivalence
▶ + commitment value ⇒ non-equivalence

▶ What drives commitment value in the first place?

▶ Normal distributions + risk-neutrality:
▶ Time dimension:

▶ One period: 0
▶ Continuous time: 0
▶ T = 2: +

▶ Disclosure:
▶ Perfect or precise disclosure: 0
▶ Imprecise disclosure: +

▶ One-period Kyle models (Bernhardt and Boulatov, 2023):
▶ Symmetric Bernoulli distribution of asset value: +
▶ Risk-averse insider: +
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Conclusion

▶ A model with a sequence of information arrival and
post-trade (partial) disclosure.

▶ Equilibrium computation is equivalent to solving a
consumption-saving model.

▶ Ideas transported from permanent income hypothesis:
Information usage today depends on the expectation of
future information.
▶ Saving for rainy days
▶ Consumption smoothing
▶ Precautionary saving

▶ Zero commitment value drives the equivalence result.
▶ Future research: What drives the commitment value?
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