E vs. G: Environmental Policy and Earnings Management in China

Darwin Choi (HKUST) and Feifei Lai (CUHK)

ABFER 12th Annual Conference

May 19, 2025

Presented by Darwin Choi

May 19, 2025

1/20

Motivation

- The concept of Environmental, Social, and Governance (ESG) has gained significant attention in recent years
 - E, S. and G were first used together by a United Nations report in 2004

2 / 20

(1日) (1日) (1日)

Motivation

- The concept of Environmental, Social, and Governance (ESG) has gained significant attention in recent years
 - $\bullet\,$ E, S. and G were first used together by a United Nations report in 2004
- While the overall ESG performance of firms has generally improved, conflicts among the E, S, and G dimensions can arise
 - A prominent example: Volkswagen used software to cheat emissions tests in 2015

2 / 20

→ Ξ → → Ξ →

Motivation

- The concept of Environmental, Social, and Governance (ESG) has gained significant attention in recent years
 - $\bullet\,$ E, S. and G were first used together by a United Nations report in 2004
- While the overall ESG performance of firms has generally improved, conflicts among the E, S, and G dimensions can arise
 - A prominent example: Volkswagen used software to cheat emissions tests in 2015
- Despite the growing interest in ESG, empirical evidence directly documenting these conflicts remains limited

2 / 20

• • = • • = •

- We provide systematic evidence of a conflict between E and G issues
 - Using the automatic air pollutant monitoring system implemented in China in around 2012

(1日) (1日) (1日)

- We provide systematic evidence of a conflict between E and G issues
 - Using the automatic air pollutant monitoring system implemented in China in around 2012
- E has improved
 - Greenstone et al. (AER Insights 2022) and Barwick et al. (AER 2024) show that pollution data accuracy and public awareness of pollution have increased

3/20

• • = • • = •

- We provide systematic evidence of a conflict between E and G issues
 - Using the automatic air pollutant monitoring system implemented in China in around 2012
- E has improved
 - Greenstone et al. (AER Insights 2022) and Barwick et al. (AER 2024) show that pollution data accuracy and public awareness of pollution have increased
- However, polluting firms face heightened scrutiny regarding their environmental performance
 - Choi, Mukherjee & Zheng (2025) show that stock prices of brown firms dropped more than those of green firms after the introduction of the monitoring system

3/20

- ${\ensuremath{\, \bullet }}$ We provide systematic evidence of a conflict between E and G issues
 - Using the automatic air pollutant monitoring system implemented in China in around 2012
- E has improved
 - Greenstone et al. (AER Insights 2022) and Barwick et al. (AER 2024) show that pollution data accuracy and public awareness of pollution have increased
- However, polluting firms face heightened scrutiny regarding their environmental performance
 - Choi, Mukherjee & Zheng (2025) show that stock prices of brown firms dropped more than those of green firms after the introduction of the monitoring system
 - Given heightened regulatory scrutiny and negative public perception, polluting firms may choose to engage in dishonest behavior \rightarrow G may deteriorate

May 19, 2025

• In 2012, as part of its "War on Pollution," the Chinese government established an automatic air pollutant monitoring system

(1日) (1日) (1日)

- In 2012, as part of its "War on Pollution," the Chinese government established an automatic air pollutant monitoring system
 - This system enables real-time data transmission from monitoring equipment to the central government and the public

4 / 20

・ 何 ト ・ ヨ ト ・ ヨ ト

- In 2012, as part of its "War on Pollution," the Chinese government established an automatic air pollutant monitoring system
 - This system enables real-time data transmission from monitoring equipment to the central government and the public
 - Making it much harder for local governments to manipulate air quality data
 - For example, continuous, automatic monitoring prevents local authorities from selectively reporting less polluted days or times to the central government

4/20

- In 2012, as part of its "War on Pollution," the Chinese government established an automatic air pollutant monitoring system
 - This system enables real-time data transmission from monitoring equipment to the central government and the public
 - Making it much harder for local governments to manipulate air quality data
 - For example, continuous, automatic monitoring prevents local authorities from selectively reporting less polluted days or times to the central government
 - As noted by Greenstone et al. (AER Insights 2022), Chinese local officials' performance in economic and social issues is tied to their career advancement, creating an incentive for them to cheat

4 / 20

(日本) (日本) (日本)

- In 2012, as part of its "War on Pollution," the Chinese government established an automatic air pollutant monitoring system
 - This system enables real-time data transmission from monitoring equipment to the central government and the public
 - Making it much harder for local governments to manipulate air quality data
 - For example, continuous, automatic monitoring prevents local authorities from selectively reporting less polluted days or times to the central government
 - As noted by Greenstone et al. (AER Insights 2022), Chinese local officials' performance in economic and social issues is tied to their career advancement, creating an incentive for them to cheat
- Local governments are under pressure to improve air quality after the system is established → They will likely push polluting firms to reduce pollution

- 小田 ト イヨト - 三日

• We focus on one dimension of firms' dishonest behavior—accrual-based earnings management

э

5/20

イロト 不得下 イヨト イヨト

- We focus on one dimension of firms' dishonest behavior—accrual-based earnings management
 - Upward earnings management: Polluting firms might inflate profits to prevent alarming stakeholders and to appear financially robust

5/20

A (10) × (10)

- We focus on one dimension of firms' dishonest behavior—accrual-based earnings management
 - Upward earnings management: Polluting firms might inflate profits to prevent alarming stakeholders and to appear financially robust
 - Downward earnings management: Polluting firms may engage in downward earnings management to avoid attracting regulatory attention, since the government may target larger and more profitable firms

5 / 20

< 回 > < 回 > < 回 >

- We focus on one dimension of firms' dishonest behavior—accrual-based earnings management
 - Upward earnings management: Polluting firms might inflate profits to prevent alarming stakeholders and to appear financially robust
 - Downward earnings management: Polluting firms may engage in downward earnings management to avoid attracting regulatory attention, since the government may target larger and more profitable firms

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

May 19, 2025

5/20

• Zang (TAR 2012) shows that real activities manipulation and accrual-based earnings management serve as substitutes

- We focus on one dimension of firms' dishonest behavior—accrual-based earnings management
 - Upward earnings management: Polluting firms might inflate profits to prevent alarming stakeholders and to appear financially robust
 - Downward earnings management: Polluting firms may engage in downward earnings management to avoid attracting regulatory attention, since the government may target larger and more profitable firms
- Zang (TAR 2012) shows that real activities manipulation and accrual-based earnings management serve as substitutes
 - The automatic monitoring system increases the costs associated with manipulating air pollutant data, raising the likelihood that firms engage in earnings management

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012

э

イロト 不得下 イヨト イヨト

- Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012
 - Polluting firms increased their use of discretionary accruals following the policy change
 - In 2012, polluting firms' absolute discretionary accruals rose by 1.8% (mean absolute accruals in the sample is 7.8%)
 - The likelihood of negative earnings adjustments increased by over 10% (sample mean is 35%)

6 / 20

- Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012
 - Polluting firms increased their use of discretionary accruals following the policy change
 - In 2012, polluting firms' absolute discretionary accruals rose by 1.8% (mean absolute accruals in the sample is 7.8%)
 - The likelihood of negative earnings adjustments increased by over 10% (sample mean is 35%)
 - Earnings management persists till at least 2014

• • = • • = •

- Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012
 - Polluting firms increased their use of discretionary accruals following the policy change
 - In 2012, polluting firms' absolute discretionary accruals rose by 1.8% (mean absolute accruals in the sample is 7.8%)
 - The likelihood of negative earnings adjustments increased by over 10% (sample mean is 35%)
 - Earnings management persists till at least 2014
- Polluting firms' managed earnings became less informative for investors, as measured by the drop in long-window earnings response coefficients

6/20

- Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012
 - Polluting firms increased their use of discretionary accruals following the policy change
 - In 2012, polluting firms' absolute discretionary accruals rose by 1.8% (mean absolute accruals in the sample is 7.8%)
 - The likelihood of negative earnings adjustments increased by over 10% (sample mean is 35%)
 - Earnings management persists till at least 2014
- Polluting firms' managed earnings became less informative for investors, as measured by the drop in long-window earnings response coefficients
- Polluting firms show heightened earnings management when
 - They are larger or more profitable
 - They are located near monitoring stations or in less market-oriented regions
 - They have weaker customer-supplier relationships or are in more competitive industries

6/20

- Difference-in-Differences: Polluting firms vs non-polluting firms, before vs after 2012
 - Polluting firms increased their use of discretionary accruals following the policy change
 - In 2012, polluting firms' absolute discretionary accruals rose by 1.8% (mean absolute accruals in the sample is 7.8%)
 - The likelihood of negative earnings adjustments increased by over 10% (sample mean is 35%)
 - Earnings management persists till at least 2014
- Polluting firms' managed earnings became less informative for investors, as measured by the drop in long-window earnings response coefficients
- Polluting firms show heightened earnings management when
 - They are larger or more profitable
 - They are located near monitoring stations or in less market-oriented regions
 - They have weaker customer-supplier relationships or are in more competitive industries
- Our paper highlights the conflict between E and G, as well as the unintended consequences of environmental policies

6 / 20

Data

- Financial and accounting information from the China Stock Market and Accounting Research Database (CSMAR)
- Polluting industries are defined in The Directory of Classified Management of Environmental Protection Verification
 - Issued by the Ministry of Environmental Protection (now called the Ministry of Ecology and Environment) in 2008
 - 16 categories including thermal power, steel, cement, electrolytic aluminum, coal, and metallurgy, etc.
- Non-financial and non-ST (Special Treatment) firms listed in Shanghai and Shenzhen
- Sample period: 2009–2014
- 11,040 firm-year observations from 759 polluting firms and 1,696 non-polluting firms

イロト 不得 トイヨト イヨト 二日

May 19, 2025

Discretionary Accruals

• Modified Jones (JAR 1991) model

$$\frac{TA_{i,t}}{A_{i,t-1}} = \beta_1 \frac{1}{A_{i,t-1}} + \beta_2 \frac{\Delta REV_{i,t} - \Delta REC_{i,t}}{A_{i,t-1}} + \beta_3 \frac{PPE_{i,t}}{A_{i,t-1}} + \varepsilon_{i,t}$$
(1)
$$DA_{i,t} = \frac{TA_{i,t}}{A_{i,t-1}} - \hat{\beta}_1 \frac{1}{A_{i,t-1}} - \hat{\beta}_2 \frac{\Delta REV_{i,t} - \Delta REC_{i,t}}{A_{i,t-1}} - \hat{\beta}_3 \frac{PPE_{i,t}}{A_{i,t-1}}$$
(2)

• where $TA_{i,t}$ denotes the total accruals, defined as the operating income minus operating cash flows; $A_{i,t-1}$ is the lagged total assets; $\Delta REV_{i,t}$ is the change in revenue from year t-1 to year t; $\Delta REC_{i,t}$ is the change in account receivables from year t-1 to year t; and $PPE_{i,t}$ is property, plant, and equipment

8 / 20

(日本) (日本) (日本)

Discretionary Accruals

• Modified Jones (JAR 1991) model

$$\frac{TA_{i,t}}{A_{i,t-1}} = \beta_1 \frac{1}{A_{i,t-1}} + \beta_2 \frac{\Delta REV_{i,t} - \Delta REC_{i,t}}{A_{i,t-1}} + \beta_3 \frac{PPE_{i,t}}{A_{i,t-1}} + \varepsilon_{i,t}$$
(1)
$$DA_{i,t} = \frac{TA_{i,t}}{A_{i,t-1}} - \hat{\beta}_1 \frac{1}{A_{i,t-1}} - \hat{\beta}_2 \frac{\Delta REV_{i,t} - \Delta REC_{i,t}}{A_{i,t-1}} - \hat{\beta}_3 \frac{PPE_{i,t}}{A_{i,t-1}}$$
(2)

- where $TA_{i,t}$ denotes the total accruals, defined as the operating income minus operating cash flows; $A_{i,t-1}$ is the lagged total assets; $\Delta REV_{i,t}$ is the change in revenue from year t-1 to year t; $\Delta REC_{i,t}$ is the change in account receivables from year t-1 to year t; and $PPE_{i,t}$ is property, plant, and equipment
- The coefficients in (1) are estimated cross-sectionally for industry-year groups with at least 10 observations
- *DA_{i,t}* is the discretionary accruals, defined as the difference between firms' actual accruals and the normal level of accruals, serving as a proxy for earnings management

Main Test

• Difference-in-Differences

$$|DA|_{i,t} = \beta_1 AMS_t \times Pollute_i + \beta_2 Controls_{i,t} + \alpha_i + \alpha_t + \varepsilon_{i,t}$$
(3)

- where $|DA|_{i,t}$ is the absolute value of discretionary accruals
- A positive (negative) $DA_{i,t}$ suggests that firm *i* has made income increasing (decreasing) accrual adjustments in year *t*, which indicates positive (negative) earnings management

9/20

Main Test

Difference-in-Differences

$$|DA|_{i,t} = \beta_1 AMS_t \times Pollute_i + \beta_2 Controls_{i,t} + \alpha_i + \alpha_t + \varepsilon_{i,t}$$
(3)

- where $|DA|_{i,t}$ is the absolute value of discretionary accruals
- A positive (negative) $DA_{i,t}$ suggests that firm *i* has made income increasing (decreasing) accrual adjustments in year *t*, which indicates positive (negative) earnings management
- Controls: Size, Leverage, ROA, Loss dummy, # Directors, % of independent directors, CEOChairman, % shares held by top 5, Big 4 auditor, SOE

9/20

Discretionary Accruals: Magnitude

	(1)	(2)	(3)	(4)	(5)	(6)
Sample			First	Second	Third	
Dependent Variable	DA	DA	DA	DA	DA	DA
$AMS_t \times Pollute$	0.0176***	0.0182***				0.0154**
	(4.29)	(4.50)				(2.48)
$LMS\timesPollute$			0.0157***	0.0164***	0.0382**	
			(3.66)	(2.60)	(2.59)	
$AMS_{t\text{-}2} \times Pollute$						-0.0051
						(-0.78)
$AMS_{t-1} imes Pollute$						0.0088
						(1.30)
$AMS_{t+1} \times Pollute$						0.0187***
						(2.93)
$AMS_{t+2} imes Pollute$						0.0261***
						(3.84)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Cluster by Firm	Yes	Yes	Yes	Yes	Yes	Yes
Controls	No	Yes	Yes	Yes	Yes	Yes
Observations	11,006	11,006	9,508	8,430	8,182	11,006
R^2	0.3326	0.3391	0.3532	0.3525	0.3548	0.3397

Choi and Lai (2025)

May 19, 2025

10 / 20

э

Discretionary Accruals: Direction

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sample			First	Wave	Second	d Wave	Third	Wave
Model	OLS	Logit	OLS	Logit	OLS	Logit	OLS	Logit
Dependent Variable	<i>DA</i> < 0	DA < 0	DA < 0	DA < 0	DA < 0	DA < 0	DA < 0	<i>DA</i> < 0
AMS imes Pollute	0.1032***	0.5536***						
	(5.25)	(4.50)						
$LMS\timesPollute$			0.0862***	0.4415***	0.1262***	0.7930***	0.0604	0.3304
			(3.59)	(3.02)	(3.60)	(3.58)	(1.79)	(1.12)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cluster by Firm	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	11,006	8,732	9,508	7,412	8,430	6,468	8,182	6,245
R^2 /Pseudo R^2	0.3272	0.1710	0.3337	0.1710	0.3368	0.1710	0.3359	0.1690
						• • • • • • • • • • • • • • • • • • •	<	E ୬५(
Choi and Lai (20	025)		E vs.	G		May 19	9, 2025	11 / 20

Earnings Response Coefficients

$$BHAR_{i,t} = \beta_1 UE_{i,t} + \beta_2 UE_{i,t} \times AMS_t + \beta_3 UE_{i,t} \times Pollute_i + \beta_4 AMS_t \times Pollute_i + \beta_5 UE_{i,t} \times AMS_t \times Pollute_i + \varepsilon_{i,t}$$
(4)
$$BHAR_{i,t} = \prod_{m=1}^{12} (1 + R_{i,m}) - \prod_{m=1}^{12} (1 + R_{b,m})$$
(5)

Dependent Variable	(1)	(2)	(3)
	BHAR-FW	BHAR-FVW	BHAR-TVW
$UE \times AMS \times Pollute$	-0.620**	-0.644**	-0.631**
	(-2.014)	(-2.093)	(-2.049)
Observations R^2	9,858	9,858	9,858
	0.053	0.056	0.060

Earnings Response Coefficients

$$BHAR_{i,t} = \beta_1 UE_{i,t} + \beta_2 UE_{i,t} \times AMS_t + \beta_3 UE_{i,t} \times Pollute_i + \beta_4 AMS_t \times Pollute_i + \beta_5 UE_{i,t} \times AMS_t \times Pollute_i + \varepsilon_{i,t}$$
(4)
$$BHAR_{i,t} = \prod_{m=1}^{12} (1 + R_{i,m}) - \prod_{m=1}^{12} (1 + R_{b,m})$$
(5)

		()	(-)	
Dependent Variable	BHAR-EW	BHAR-FVW	BHAR-TVW	
$UE\timesAMS\timesPollute$	-0.620**	-0.644**	-0.631**	
	(-2.014)	(-2.093)	(-2.049)	
Observations	9,858	9,858	9,858	
R^2	0.053	0.056	0.060	

Choi and Lai (2025)

E vs. G

・ ・ □ ・ ・ ヨ ・ ・ ヨ ・ の

May 19, 2025

12 / 20

Cross-sectional Tests: Firm Size

• Larger and more profitable firms are more susceptible to "political costs," (Watts & Zimmerman, TAR 1978; Han & Wang, TAR 1998) as these firms are more likely to be targeted by regulators

イロト 不得下 イヨト イヨト

Cross-sectional Tests: Firm Size

• Larger and more profitable firms are more susceptible to "political costs," (Watts & Zimmerman, TAR 1978; Han & Wang, TAR 1998) as these firms are more likely to be targeted by regulators

Cross-sectional Tests: Profitability

May 19, 2025 14 / 20

Cross-sectional Tests: Distance to Monitoring Station

May 19, 2025 15 / 20

э

Cross-sectional Tests: Market-Oriented Regions

 Local governments are more likely to intervene in less market-oriented regions (based on Fan, Wang & Zhu 2011 Index)

Cross-sectional Tests: Market-Oriented Regions

 Local governments are more likely to intervene in less market-oriented regions (based on Fan, Wang & Zhu 2011 Index)

16/20

Cross-sectional Tests: Customers

• Earnings management is moderated by strong customer and supplier relationships

17 / 20

(a) < (a) < (b) < (b)

Cross-sectional Tests: Customers

• Earnings management is moderated by strong customer and supplier relationships

∃ ► < ∃ ►</p>

Cross-sectional Tests: Distance to Monitoring Station

May 19, 2025 18 / 20

э

Cross-sectional Tests: Customers

• Earnings management is exacerbated by market competition

э

イロト 不得 トイヨト イヨト

Cross-sectional Tests: Customers

• Earnings management is exacerbated by market competition

May 19, 2025

3

Conclusion

- Our paper highlights the conflict between E and G, as well as the unintended consequences of environmental policies
 - Polluting firms increased their use of discretionary accruals following the policy change
 - Earnings management persists till at least 2014
- Polluting firms' managed earnings became less informative for investors, as measured by the drop in long-window earnings response coefficients
- Polluting firms show heightened earnings management when
 - They are larger or more profitable
 - They are located near monitoring stations or in less market-oriented regions
 - They have weaker customer-supplier relationships or are in more competitive industries

・ロト ・ 西ト ・ ヨト ・ ヨト

May 19, 2025