### Innovation Networks and R&D Allocation

Xugan ChenErnest LiuSong MaYalePrinceton & NBERYale & NBER

Spring 2025

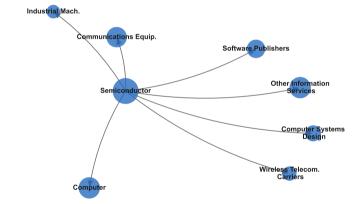
### **R&D** Allocation and Innovation Policy

The Economic Value of Science

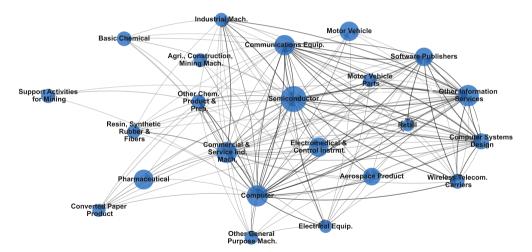
- Science and innovation policies are central for policymakers, businesses, and the society
  - ... often the decision to "put money in the right places"
  - ... the guest is to unleash the value of science and technology



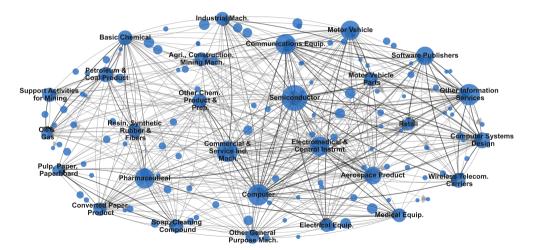



### Visualize the Problem

### Visualize the Problem

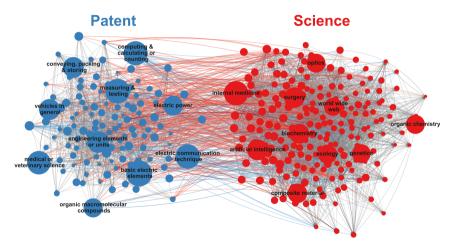



0000


### Visualize the Problem



000




0000



0000

### Innovation Network with Science



000

# Talk Today

1. "Innovation Networks and R&D Allocation" (Liu and Ma, 2024)

2. "The Economic Value of Science" (Chen, Liu, and Ma, Work-in-Progress)

# Talk Today

- 1. "Innovation Networks and R&D Allocation" (Liu and Ma, 2024)
  - A conceptual framework featuring innovation networks and their impacts
  - Quantitative exercises showcasing its usefulness using patent-based innovation network
  - ► Today: helpful to convey intuitions
- 2. "The Economic Value of Science" (Chen, Liu, and Ma, Work-in-Progress)
  - Constructing a network integrating science and patents, useful new evidence
  - Outline the potential things we can do with the framework and the more complete network
  - ► Today: what we do and want to learn—excited to get your critiques and comments

# Theory and Intuitions

# Setup: Closed-Economy, Multi-Sector, Quality-Ladder

Preferences: 
$$\int_0^\infty e^{-\rho t} \ln c_t$$
,  $c_t = \prod_{i=1}^K c_{it}^{\beta_i}$  Production:  $c_{it} = q_{it}^{\psi} \ell_{it}$ 

 $ightharpoonup q_{it}$ : a sector's knowledge stock (state variable); can be improved through R&D

0000000

# Setup: Closed-Economy, Multi-Sector, Quality-Ladder

Preferences: 
$$\int_0^\infty e^{-\rho t} \ln c_t$$
,  $c_t = \prod_{i=1}^K c_{it}^{\beta_i}$  Production:  $c_{it} = q_{it}^{\psi} \ell_{it}$ 

 $ightharpoonup q_{ir}$ : a sector's knowledge stock (state variable); can be improved through R&D

- Imagine we like Food, Electronics, and Medical Devices
- $\beta' = (\beta_F, \beta_F, \beta_M) = (.4, .4, .2)$ , capturing "how much" we like them
- $\triangleright$  R&D can help improve quality or productivity of goods,  $q_F$ ,  $q_F$ ,  $q_M$

### Innovation Network and Innovation Production

- $ightharpoonup q_{it}$ : can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 
  - (flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{it}^{\omega_{ij}}$

$$n_{it} = \eta_i s_{it} \chi_{it},$$

$$\chi_{it} \equiv \prod_{j=1}^K q_j^{\alpha}$$

- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$

### Innovation Network and Innovation Production

ightharpoonup g<sub>it</sub>: can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 

(flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{it}^{\omega_{ij}}$ 

$$n_{it} = \eta_i s_{it} \chi_{it},$$

The Economic Value of Science

$$_{t}\equiv\prod_{i=1}^{K}q_{it}^{\omega}$$

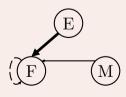
- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- ► Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$







0000000


### Innovation Network and Innovation Production

- $ightharpoonup q_{it}$ : can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 
  - (flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{it}^{\omega_{ij}}$

$$n_{it} = \eta_i s_{it} \chi_{it},$$

$$\equiv \prod_{j=1}^K q_{jt}^{\omega_j}$$

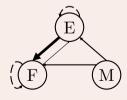
- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- ► Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$



$$\Omega = E \begin{bmatrix} F & E & M \\ .40 & .50 & .10 \\ M & & & \end{bmatrix}, \begin{bmatrix} \chi_F = q_F^{0.40} \cdot q_E^{0.50} \cdot q_M^{0.10} \\ \end{bmatrix},$$

### Innovation Network and Innovation Production

 $ightharpoonup q_{it}$ : can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 


(flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{ir}^{\omega_{ij}}$ 

$$n_{it} = \eta_i s_{it} \chi_{it},$$

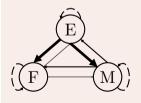
The Economic Value of Science

$$q_t \equiv \prod_{i=1}^K q_{it}^{\omega_i}$$

- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- ► Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$



$$oldsymbol{\Omega} = egin{array}{cccc} F & E & M & & & & & & & \\ F & [ & .40 & .50 & .10 & ] & , & [ \chi_F = q_F^{0.40} \cdot q_E^{0.50} \cdot q_M^{0.10} & ] & & & & & & \\ \Omega = E & [ & .05 & .85 & .10 & ] & , & [ \chi_E = q_F^{0.05} \cdot q_E^{0.85} \cdot q_M^{0.10} & ] & , & & & & & \\ M & [ & .05 & .85 & .10 & ] & , & [ \chi_E = q_F^{0.05} \cdot q_E^{0.85} \cdot q_M^{0.10} & ] & , & & & & \\ \end{array}$$


- $ightharpoonup q_{it}$ : can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 
  - (flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{it}^{\omega_{ij}}$

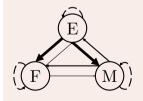
$$n_{it} = \eta_i s_{it} \chi_{it},$$

The Economic Value of Science

$$\equiv \prod_{j=1}^K q_{jt}^{\omega_j}$$

- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- ► Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$




- $ightharpoonup q_{it}$ : can be improved through R&D resources,  $s_{it}$ ,  $(\sum_i s_i = \bar{s})$ 
  - (flow innovation output)  $n_{it} = \eta_i s_{it} \chi_{it}, \qquad \chi_{it} \equiv \prod_{i=1}^K q_{it}^{\omega_{ij}}$

$$n_{it} = \eta_i s_{it} \chi_{it},$$

The Economic Value of Science

$$_{i}\equiv\prod_{i=1}^{K}q_{it}^{\omega}$$

- $\triangleright \chi_{it}$ : an aggregator of prior knowledge that benefits R&D in sector i
- $\mathbf{\Omega}_{K \times K} \equiv [\omega_{ii}]$  defines the innovation network
- ► Flow innovation  $n_{it}$  improves  $q_{it}$  with rate  $\ln(n_{it}/q_{it})$ , step size  $\lambda$ :  $\dot{q}_{it}/q_{it} = \lambda \ln(n_{it}/q_{it})$



$$\Omega = \begin{bmatrix} F & E & M \\ F & .40 & .50 & .10 \\ .05 & .85 & .10 \\ M & .05 & .75 & .20 \end{bmatrix}$$

$$\boldsymbol{\Omega} = \begin{bmatrix} F & E & M \\ .40 & .50 & .10 \\ .05 & .85 & .10 \\ M & .05 & .75 & .20 \end{bmatrix}, \begin{bmatrix} \chi_F = q_F^{0.40} \cdot q_E^{0.50} \cdot q_M^{0.10} \\ \chi_E = q_F^{0.05} \cdot q_E^{0.85} \cdot q_M^{0.10} \\ \chi_M = q_F^{0.05} \cdot q_E^{0.75} \cdot q_M^{0.20} \end{bmatrix}, \boldsymbol{a} = \begin{bmatrix} .08 \\ .81 \\ .11 \end{bmatrix}$$

# Planner's Optimal Control Problem

The Economic Value of Science

Given total production and R&D resources  $(\bar{\ell}, \bar{s})$ , how to allocate across sectors  $(\ell_{ir}, s_{ir})$ ?

$$V\left(\left\{\frac{\mathbf{q}_{i0}}{\mathbf{q}_{i0}}\right\}\right) \equiv \max_{\left\{\mathbf{s}_{it}, \ell_{it}\right\}} \int_{0}^{\infty} e^{-\rho t} \sum_{i} \beta_{i} \left(\psi \ln \mathbf{q}_{it} + \ln \ell_{it}\right) dt$$

s.t. 
$$\dot{q}_{it}/q_{it} = \lambda \left( \ln \eta_i + \ln s_{it} + \sum_j \omega_{ij} \left( \ln q_{jt} - \ln q_{it} \right) \right), \quad \sum_i s_{it} = \bar{s}, \quad \sum_i \ell_{it} = \bar{\ell}.$$

# Planner's Optimal Control Problem

▶ Given total production and R&D resources  $(\bar{\ell}, \bar{s})$ , how to allocate across sectors  $(\ell_{it}, s_{it})$ ?

$$V\left(\left\{\frac{\mathbf{q}_{i0}}{\mathbf{q}_{i0}}\right\}\right) \equiv \max_{\left\{\mathbf{s}_{it}, \ell_{it}\right\}} \int_{0}^{\infty} e^{-\rho t} \sum_{i} \beta_{i} \left(\psi \ln \mathbf{q}_{it} + \ln \ell_{it}\right) dt$$

$$\text{s.t. } \dot{q}_{it}/q_{it} = \lambda \left( \ln \eta_i + \ln s_{it} + \sum_j \omega_{ij} \left( \ln q_{jt} - \ln q_{it} \right) \right), \quad \sum_i s_{it} = \bar{s}, \quad \sum_i \ell_{it} = \bar{\ell}.$$

- s<sub>it</sub> has both direct and indirect impacts (knowledge spillover)
  - **Direct**:  $s_{it} \Rightarrow q_{it} \Rightarrow c_{it}$

# Planner's Optimal Control Problem

▶ Given total production and R&D resources ( $\bar{\ell}$ ,  $\bar{s}$ ), how to allocate across sectors ( $\ell_{it}$ ,  $s_{it}$ )?

$$V\left(\left\{q_{i0}\right\}\right) \equiv \max_{\left\{s_{it},\ell_{it}\right\}} \int_{0}^{\infty} e^{-\rho t} \sum_{i} \beta_{i} \left(\psi \ln q_{it} + \ln \ell_{it}\right) dt$$

s.t. 
$$\dot{q}_{it}/q_{it} = \lambda \left( \ln \eta_i + \ln s_{it} + \sum_j \omega_{ij} \left( \ln q_{jt} - \ln q_{it} \right) \right), \quad \sum_i s_{it} = \bar{s}, \quad \sum_i \ell_{it} = \bar{\ell}.$$

- s<sub>it</sub> has both direct and indirect impacts (knowledge spillover)
  - **Direct**:  $s_{it} \Rightarrow a_{it} \Rightarrow c_{it}$
  - ▶ Indirect:  $s_{it} \Rightarrow q_{it} \{ \Rightarrow \chi_{jt} \Rightarrow q_{jt} \} \Rightarrow c_{jt}, \forall j$  (entire future innovation and consumption path)

## Result #1: Optimal R&D Allocation, $\gamma$

Proposition. The optimal allocation of R&D resources is

$$s_{it} = \gamma_i ar{s} \quad ext{for all } t, \quad ext{where } oldsymbol{\gamma'} \propto eta' \left( oldsymbol{I} - rac{\Omega}{1 + 
ho/\lambda} 
ight)^{-1} \equiv eta' \left( oldsymbol{I} + rac{\Omega}{1 + 
ho/\lambda} + \left( rac{\Omega}{1 + 
ho/\lambda} 
ight)^2 + \cdots 
ight)$$

## Result #1: Optimal R&D Allocation, $\gamma$

Proposition. The optimal allocation of R&D resources is

$$s_{it} = rac{m{\gamma}_iar{m{s}}}{m{s}} \quad ext{for all } t, \quad ext{where } rac{m{\gamma}'}{m{\gamma}} \propto m{eta}' \left( m{I} - rac{m{\Omega}}{1 + 
ho/\lambda} 
ight)^{-1} \equiv m{eta}' \left( m{I} + rac{m{\Omega}}{1 + 
ho/\lambda} + \left( rac{m{\Omega}}{1 + 
ho/\lambda} 
ight)^2 + \cdots 
ight)$$

- **Direct**: captured by  $\beta'I$
- ▶ Indirect: captured by  $\beta'\Omega$  ("next period"),  $\beta'\Omega^2$  ("next-next period"), ...
- Effective discount rate:  $\rho/\lambda$ , i.e., discount rate over innovation step-size
  - myopic planner:  $\lim_{\rho/\lambda \to \infty} \gamma = \beta$ ; very patient planner:  $\lim_{\rho/\lambda \to 0} \gamma = a$  (Innovation Centrality)

### Result #2: Welfare Cost of R&D Misallocation

**Proposition.** Consumption-equivalent welfare loss from R&D misallocation  $\boldsymbol{b}$  is

$$\ln \mathcal{L}(\boldsymbol{b}) = \frac{\psi \lambda}{\rho} \times \underbrace{\gamma' \left( \ln \gamma - \ln \boldsymbol{b} \right)}_{\text{misallocation}},$$

consumer is just as well-off under b as under  $\gamma$  if consumption increases by  $\mathcal{L}(b)$  at all times.

### Result #2: Welfare Cost of R&D Misallocation

**Proposition.** Consumption-equivalent welfare loss from R&D misallocation **b** is

$$\ln \mathcal{L}(\boldsymbol{b}) = \frac{\psi \lambda}{\rho} \times \underbrace{\gamma' \left( \ln \gamma - \ln \boldsymbol{b} \right)}_{\text{misallocation}},$$

consumer is just as well-off under b as under  $\gamma$  if consumption increases by  $\mathcal{L}(b)$  at all times.

#### Intuition & Example

• Recall  $\gamma = (.18, .69, .13)$ , say  $\mathbf{b} = (1/3, 1/3, 1/3)$ , set  $\psi = 0.06$ :

$$\ln \mathcal{L}\left(\boldsymbol{b}\right) = 5.4\%$$

- Suppose the economy benefits from foreign spillovers:  $\chi_{it} \equiv \prod_{j} \left[ \left(q_{jt}
  ight)^{x} \left(q_{jt}^{f}
  ight)^{1-x} 
  ight]^{\omega_{ij}}$ 
  - x: share of domestic contribution of spillovers from j to i; "self-reliance"
  - ▶ High-x economy (more reliant on domestic knowledge): US, Japan, etc.  $x \sim 0.8$
  - Many countries,  $x \sim 0.1$

- Suppose the economy benefits from foreign spillovers:  $\chi_{it} \equiv \prod_j \left[ \left(q_{jt}\right)^x \left(q_{jt}^f\right)^{1-x} \right]^{\omega_{ij}}$ 
  - $\triangleright$  x: share of domestic contribution of spillovers from j to i; "self-reliance"
  - ightharpoonup High-ightharpoonup economy (more reliant on domestic knowledge): US, Japan, etc. ightharpoonup 0.8
  - Many countries,  $x \sim 0.1$
- ► How does x affect a country's optimal allocation and welfare calculations?
  - ightharpoonup High-ightharpoonup: follow  $\gamma$  and invest in central sectors; mis-allocation is costly
  - **Low-**x: follow closer to  $\beta$  (can learn from others!); mis-allocation less costly
  - Intuition?

## Map to Empirical Applications

| $\gamma$        |                       | Optimal Allocation | $m{\gamma}' \propto m{eta}' \left( m{I} - rac{m{\Omega} \circ m{X}}{1 +  ho/\lambda}  ight)^{-1}$                      |
|-----------------|-----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| $In\mathcal{L}$ | $(oldsymbol{b}, \xi)$ | Welfare Cost       | $\ln\mathcal{L}\left(oldsymbol{b},\xi ight)=\xi	imesrac{\psi\lambda}{ ho}\gamma'\left(\ln\gamma-\lnoldsymbol{b} ight)$ |

# Map to Empirical Applications

#### **Key Data Input:**

- $\Omega$ : innovation network
- X: self-dependence on innovation production
- $\beta$ : consumption shares
- b: real-world R&D allocation
- $\rho/\lambda$ ,  $\psi$ : Assume  $\rho=0.05$ ,  $\lambda=0.17$ ,  $\psi=0.06$ ; results qualitatively very robust

# **Data and Empirical Analysis**

### Data

- $\triangleright$  USPTO: Domestic U.S. Patent Data ( $\Omega$  and X)
  - Key information: filing year, assignee, technology class (IPC), citation relations
- Google Patents: International Patent Data ( $\Omega$  and X)
  - Patent data from 20+ major patent offices: patents from 100+ economies
  - Identify unique innovation from multiple patent filings; identify origin country and sectors
  - Free access and *very* comparable to PATSTAT (DOCDB)
- Sectoral Data on Production and R&D ( $\beta$  and b)
  - WIOD (World Input-Output Database) on sectoral value-added
  - R&D expenses of public firms (Compustat, Worldscope, Datastream); OECD

### Constructing Innovation Network $\Omega$

$$\omega_{ij} \equiv \frac{\textit{Citations}_{ij}}{\sum_{k} \textit{Citations}_{ik}}$$

- i is the citing sector (downstream); i is the sector being cited (upstream)
- cross-country-sector innovation network extends naturally

Motivation

### Constructing Innovation Network $\Omega$

The Economic Value of Science

$$\omega_{ij} \equiv \frac{\textit{Citations}_{ij}}{\sum_{k} \textit{Citations}_{ik}}$$

- ▶ *i* is the citing sector (downstream); *i* is the sector being cited (upstream)
- cross-country-sector innovation network extends naturally

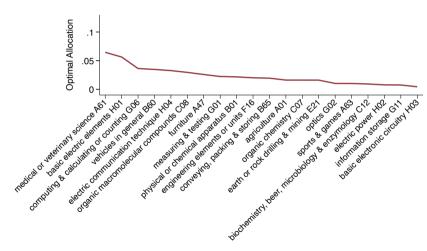
#### Intuition & Example

Motivation

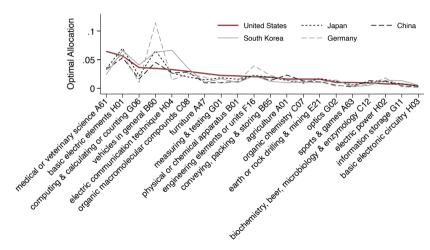
|   | Total Citations Made | From <b>F</b> | From <b>E</b> | From <b>M</b> |
|---|----------------------|---------------|---------------|---------------|
| F | 100                  | 40            | 50            | 10            |
| Ε | 1000                 | 50            | 850           | 100           |
| М | 300                  | 15            | 225           | 60            |

### Constructing Innovation Network $\Omega$

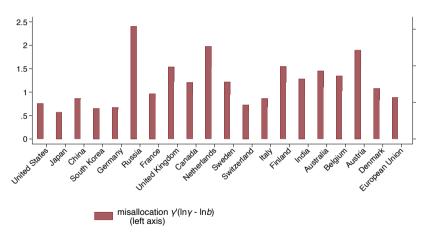
The Economic Value of Science


$$\omega_{ij} \equiv \frac{\textit{Citations}_{ij}}{\sum_{k} \textit{Citations}_{ik}}$$

- i is the citing sector (downstream); i is the sector being cited (upstream)
- cross-country-sector innovation network extends naturally

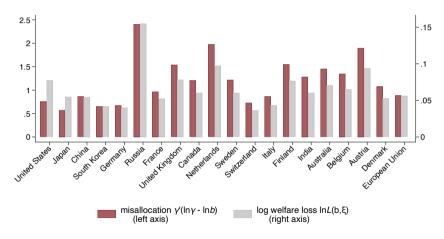

|   | Total Citations Made | From <b>F</b> | From <b>E</b> | From <b>M</b> |
|---|----------------------|---------------|---------------|---------------|
| F | 100                  | 40            | 50            | 10            |
| Ε | 1000                 | 50            | 850           | 100           |
| М | 300                  | 15            | 225           | 60            |

$$\Omega = \begin{bmatrix} F & E & M \\ .40 & .50 & .10 \\ .05 & .85 & .10 \\ M & .05 & .75 & .20 \end{bmatrix}$$


## Optimal R&D Allocation $\gamma$

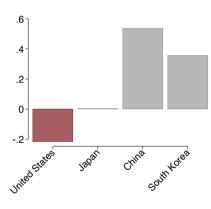


### Optimal R&D Allocation $\gamma$




#### Welfare Cost of R&D Misallocation

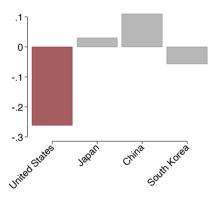



Motivation

#### Welfare Cost of R&D Misallocation



Motivation


### Examples of Misallocation (1): Semiconductors



#### **Policy Relevance:**

- CHIPS for America Act
- Facilitating American-Built Semiconductors Act
- In Our Calculation: US semi-conductor R&D
  - Under-funded by about 21%, roughly \$10 billion per year
  - While South Korea and China invest more aggressively

### Examples of Misallocation (2): Green Innovation



#### **Policy Relevance**

- Green innovation grants, tax credit, ...
- Impact investment
- In Our Calculation: US green-innovation R&D
  - Under-funded by about 25%
  - While other countries have milder misallocation

## The Economic Value of Science

Motivation

The Economic Value of Science

- The discussion is incomplete without incorporating science
- Basic Science Is A Key Driver Behind Technological Progress
  - ... particularly timely given the policy status in major economies
- Why (Empirically) Challenging?
  - Citations are sparse and incomplete between science (papers) and technology (patents)
    - Citations are sparse: classic ideas are often no longer cited: methodological fields are sometimes not cited
    - Time-varying rules related to citations and references; data processing is challenging
  - Long-term interactions between science and technology
    - Scientific discoveries sometimes take a long time to be commercialized if at all
    - Scientific discoveries often lead to major changes to all fields, shocking the knowledge network

## Preview of Our Empirical Approach: Textual Analysis

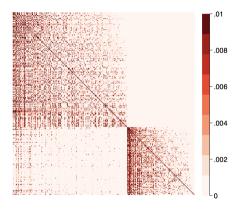
The Economic Value of Science

#### ► The Problem and Our Goal:

- Assume we have several fields  $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, ...$
- $\triangleright$  We want to measure the extent to which  $\mathcal{F}_i$  relies on and influences other sectors  $\mathcal{F}$ s

#### ► Basic Idea:

- $\triangleright$   $\mathcal{F}_i$  spills over to  $\mathcal{F}_j$ : i's knowledge starts to show up in j in the future
- $\triangleright$   $\mathcal{F}_i$  draws knowledge from  $\mathcal{F}_i$ : i uses field j's past knowledge


#### What Do We Need For This

- ▶ Long-term, time-stamped, complete information on science and technology documents
- ▶ Method to capture knowledge diffusion when citation information is unreliable

#### Data: Academic Publications and Patent Documents

- ► Text for Global Academic Publications: OpenAlex
  - 246 million academic articles from 110K journals between 1902-2021
  - ▶ Basic information: publication year, authors and affiliations, scientific field, references
  - ► Text information: paper titles and abstracts
- Text for Global Patents
  - ▶ 64 million patents from 40+ major patent offices and 100+ economies in 1902-2021
  - ▶ Basic information: filing year, assignees, technology class (IPC), citations to prior patents
  - ► Text information: patent titles (abstract no available universally; robust )

### Citation-Based Cross-Sector Knowledge Flows



Citation-Based Innovation Network 209 scientific fields + 131 technology classes

- Existing approach: Based on citation data
  - Only within technology classes (Acemoglu-Akcigit-Kerr. '16: Liu-Ma. '21)
  - Lack of cross-sector citation data
    - Patent-to-paper: available but not comprehensive, from Reliance on Science Details
    - Paper-to-patent: no data
  - Unit of knowledge in paper and patent is different

## Our Approach: The Initial Intuition

The Economic Value of Science

- ▶ Structure: compare textual content of fields across time using textual similarities
  - ▶ Between each field-pair  $(\mathcal{F}_i, \mathcal{F}_i)$
  - ▶ Over different lead-lag structures ( $\mathcal{F}_{it}$ ,  $\mathcal{F}_{jt'}$ , where t and t' are flexible)
  - Textual analysis of science and technology: Kelly-Papanikolaou-Seru-Taddy, '21; Biasi-Ma, '23
- ▶ Conceptual Ideas: for a focal time t, for fields  $\mathcal{F}_i$  and  $\mathcal{F}_i$ 
  - $ightharpoonup (\mathcal{F}_{i,t},\mathcal{F}_{j,t-5})$  similar:  $\mathcal{F}_i$  is downstream to  $\mathcal{F}_j$
  - ▶  $(\mathcal{F}_{i,t-5}, \mathcal{F}_{i,t})$  similar:  $\mathcal{F}_i$  is upstream to  $\mathcal{F}_i$
  - ▶ Plain English: Downstream fields use upstream fields' old stuff...

## A Simple Model of Knowledge Diffusion

#### ► Textual Representation:

Assume that the whole knowledge space of all fields has a fixed vocabulary of W distinct terms. Each research field i at time t is represented as a probability distribution  $v_{it} \in \mathbb{R}^{W \times 1}$  over words. Let  $\mathbf{V}_t \equiv [v_{1t}, \cdots, v_{N_t}]'$  denote the frequency matrix across fields at time t.

#### ► Knowledge Diffusion:

Specifically, denote the cosine similarity between the frequency vector of field i at time t and that of field j at time t-1:

$$[P_{t,t-1}]_{ij} \equiv v'_{it}v_{jt-1}.$$

Correspondingly,  $P_{t,t-1} = V_t V'_{t-1}$  denotes the entire matrix of bilateral cosine similarities in frequency vectors with one period time lag.

#### Define Innovation Network O

Define the contemporaneous cosine similarity matrix as

$$[P_t]_{ij} \equiv v'_{it}v_{jt}, \qquad P_t = \boldsymbol{V}_t \boldsymbol{V}'_t.$$

▶ Then the cross-field knowledge diffusion matrix at time t,  $\Omega_t$ , as

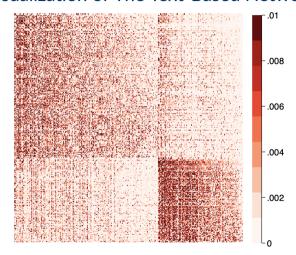
$$\Omega_t = oldsymbol{P}_{t-1}^{-1} oldsymbol{P}_{t,t-1} = \left(oldsymbol{V}_{t-1} oldsymbol{V}_{t-1}'
ight)^{-1} oldsymbol{V}_{t-1} oldsymbol{V}_t'.$$

## **Empirical Implementation**

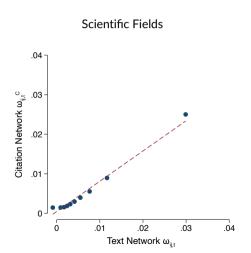
Key insight: essentially we just project  $V_t$  on  $V_{t-1}$  in a regression form

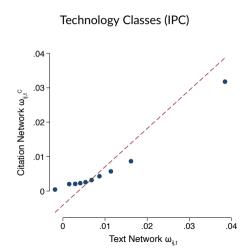
$$v_{it} = \sum_{j=1}^{N} \omega_{ijt} v_{jt-1} + \epsilon_{it},$$

Note that the vector of coefficients  $\omega_{it} \equiv [\omega_{i1t}, \dots, \omega_{iNt}]'$  from the regression is


$$oldsymbol{\omega}_{it}^{\prime} = \left( oldsymbol{V}_{t-1} oldsymbol{V}_{t-1}^{\prime} 
ight)^{-1} oldsymbol{V}_{t-1} oldsymbol{v}_{it},$$

In matrix format with  $\Upsilon_t \equiv [\epsilon_{1t}, \cdots, \epsilon_{Nt}]'$ , equation (??) implies

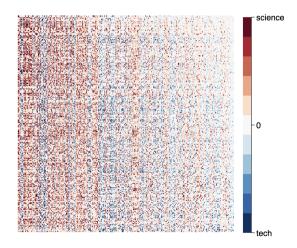

$$oldsymbol{V}_t = oldsymbol{\Omega} oldsymbol{V}_{t-1} + oldsymbol{\Upsilon}_t, \qquad oldsymbol{\Omega} = [oldsymbol{\omega}_1, \ldots, oldsymbol{\omega}_{ extsf{ extsf{N}}}]' = ig(oldsymbol{V}_{t-1}oldsymbol{V}_{t-1}'ig)^{-1}oldsymbol{V}_{t-1}oldsymbol{V}_t'.$$


### Visualization of The Text-Based Network

The Economic Value of Science

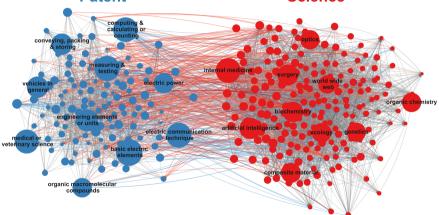


### Validation: Compare With Citation Network (When Available)






### **New Facts About This Network**


- ▶ Fact #1: The science-technology network is highly skewed and imbalanced
- ► Fact #2:
- ► Fact #3:

#### Visualization of The Text-Based Network



- Cross-sector knowledge flow between
  - 209 scientific (STEM) fields
  - 123 technology classes
- Structure:
  - Ranked by network centrality
  - Citing sector (vertical); cited sector (horizontal)
- Main takeaway:
  - Science sectors (blue) more central (other sectors cite them more)
  - Network is highly unbalanced





## New Facts About The Science-Technology Network

- ▶ Fact #1: The science-technology network is highly skewed and imbalanced
- ► Fact #2: Scientific fields are more central in the network, with active changes
- ► Fact #3:

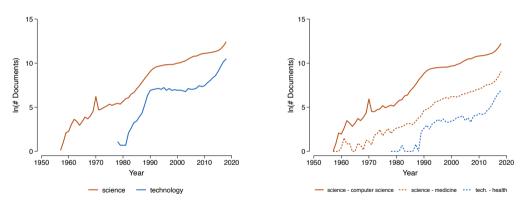
### Central Sectors in 2020

Data and Empirical Analysis

| Within-Science | Overall | Field                   | Within-Technology | Overall | Field                               |
|----------------|---------|-------------------------|-------------------|---------|-------------------------------------|
| Ranking        | Ranking |                         | Ranking           | Ranking |                                     |
| 1              | 1       | machine learning        | 1                 | 3       | aircraft, aviation & cosmonautics   |
| 2              | 2       | data science            | 2                 | 5       | physical or chemical apparatus      |
| 3              | 4       | embedded system         | 3                 | 7       | controlling & regulating            |
| 4              | 6       | computer security       | 4                 | 8       | spraying or atomising               |
| 5              | 9       | data mining             | 5                 | 10      | medical or veterinary science       |
| 6              | 11      | nanotechnology          | 6                 | 12      | computing & calculating or counting |
| 7              | 13      | real-time computing     | 7                 | 15      | furniture                           |
| 8              | 14      | computer engineering    | 8                 | 17      | layered products                    |
| 9              | 16      | software engineering    | 9                 | 18      | conveying, packing & storing        |
| 10             | 19      | artificial intelligence | 10                | 24      | signalling                          |

Concluding Remarks

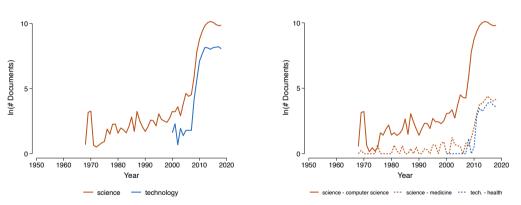
### Central Sectors in 2000


The Economic Value of Science

| Within-Science | Overall | Field                      | Within-Technology | Overall | Field                                         |
|----------------|---------|----------------------------|-------------------|---------|-----------------------------------------------|
| Ranking        | Ranking |                            | Ranking           | Ranking |                                               |
| 1              | 1       | world wide web             | 1                 | 16      | electric communication technique              |
| 2              | 2       | internet privacy           | 2                 | 21      | basic electric elements                       |
| 3              | 3       | computer network           | 3                 | 22      | computing & calculating or counting           |
| 4              | 4       | multimedia                 | 4                 | 31      | biochemistry, beer, microbiology & enzymology |
| 5              | 5       | human-computer interaction | 5                 | 32      | grinding & polishing                          |
| 6              | 6       | telecommunications         | 6                 | 35      | information storage                           |
| 7              | 7       | operating system           | 7                 | 46      | educating, cryptography & advertising         |
| 8              | 8       | software engineering       | 8                 | 47      | medical or veterinary science                 |
| 9              | 9       | computational biology      | 9                 | 49      | braiding                                      |
| 10             | 10      | cell biology               | 10                | 53      | sports & games                                |

### Central Sectors in 1960

| Within-Science | Overall | Field                  | Within-Technology | Overall | Field                                         |
|----------------|---------|------------------------|-------------------|---------|-----------------------------------------------|
| Ranking        | Ranking |                        | Ranking           | Ranking |                                               |
| 1              | 1       | radiochemistry         | 1                 | 7       | organic macromolecular compounds              |
| 2              | 2       | nuclear physics        | 2                 | 13      | nuclear physics                               |
| 3              | 3       | atomic physics         | 3                 | 29      | computing & calculating or counting           |
| 4              | 4       | nuclear engineering    | 4                 | 34      | biochemistry, beer, microbiology & enzymology |
| 5              | 5       | thermodynamics         | 5                 | 41      | measuring & testing                           |
| 6              | 6       | immunology             | 6                 | 44      | working of plastics                           |
| 7              | 8       | optics                 | 7                 | 48      | metallurgy, ferrous or non-ferrous alloys     |
| 8              | 9       | nuclear chemistry      | 8                 | 53      | basic electric elements                       |
| 9              | 10      | nanotechnology         | 9                 | 60      | coating metallic material                     |
| 10             | 11      | electrical engineering | 10                | 67      | casting & powder metallurgy                   |

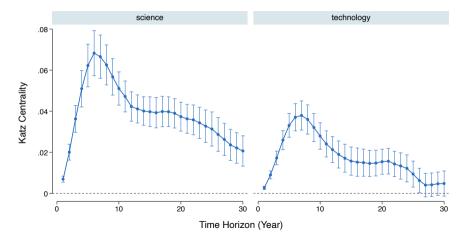

## Example: The Development of Artificial Intelligence



**Keywords:** artificial intelligence, machine intelligence, machine learning, learning algorithms, supervised learning, unsupervised learning, support vector machine, neural network, deep learning (Bloom et al. 2023, "The Diffusion of New Technologies")

Motivation

### Example: The Development of Cloud Computing




Keywords: "cloud computing, computing services, cloud services, cloud service, cloud infrastructure, public cloud" (Bloom et al. 2023, "The Diffusion of New Technologies")

### New Facts About The Science-Technology Network

- ▶ Fact #1: The science-technology network is highly skewed and imbalanced
- ► Fact #2: Scientific fields are more central in the network, with active changes
- ▶ Fact #3: Breakthrough innovations is associated with subsequent increase in field centrality

### Breakthrough Innovations ⇒ Centrality?



## **Adapting Theories for Science**

Innovation Network and Production: the spillover function  $\mathcal{O}_i(q_t)$  can be complex.

$$n_{it} = s_{it}\chi_{it}, \quad \chi_{it} \equiv \mathcal{O}_i(q_t)$$

- ▶ Previous paper analyzes the case where  $O_i(q_t)$  is time-invariant:
  - ► Cobb-Douglas: we solve for optimal allocation
  - ▶ Balanced growth path:  $O_i(q_t)$  is time-invariant, we provide a formula for the first-order approximation
- Now: we analyze an environment where  $\mathcal{O}_i(q_t)$  changes over time:
  - $\triangleright$  Deterministic changes arising through the dependence on  $q_t$ , as knowledge evolves over time
  - Then we can deal with stochastic changes

## Setting Up the "Value of Science" Problem

#### We consider a setting where:

- ▶ Given the path of R&D  $s_{it}$
- ▶ If we perturb the current R&D between time  $[0, \varepsilon)$  by  $\delta_{it}$  (so R&D is  $s_{it} + \delta_{it}$ )
- We calculate the change in welfare as  $\varepsilon \to 0$
- ► Interpreted as the social value of R&D at the current time 0, holding the path of future allocations constant

### Value of Science: Social Welfare

The Economic Value of Science

Formally, social welfare W is:

$$W_{arepsilon,\delta} = \int_0^\infty e^{-
ho t} \sum_i eta_i \ln q_{it}^{arepsilon,\delta} dt$$

$$\frac{d \ln q_{it}^{\varepsilon,\delta}}{dt} = \lambda \left[ \ln(s_{it} + \delta_{it} \mathbf{1}_{t < \varepsilon}) + \ln O_i \left( \ln q_t^{\varepsilon,\delta} \right) - \ln q_{it}^{\varepsilon,\delta} \right]$$

with  $q_{i0}^{\varepsilon,\delta}=q_{i0}$ .

The social value of R&D is:

$$\widehat{W}_{\delta} \equiv \lim_{arepsilon o 0} rac{W_{arepsilon,\delta} - W_{arepsilon}}{\delta}, \quad SV_i = rac{d\widehat{W}_{\delta}}{d\delta}$$

### Key Proposition and Quantitative Framework

► We show that:

$$SV_{it} \propto rac{\gamma_{it}}{s_{it}}, \quad \Omega_{ijt} \equiv rac{\partial \ln O_i(q_t)}{\partial \ln q_{it}}$$

▶ Our key analytic contribution is to derive  $\gamma_{it}$  and provide a way to estimate it:

$$\gamma_t' \propto eta' \lim_{u o \infty} \Phi(u,t), \quad rac{\partial \Phi(u,t)}{\partial u} = \left(I - rac{\lambda}{
ho + \lambda} \Omega_u 
ight) \Phi(u,t), \quad \Phi(t,t) = I$$

- ► Implications:
  - When  $s_{it} = \gamma_{it}$ , R&D allocation at time t cannot be improved (i.e., locally optimal at that time)
  - $\Phi(u,t)$  is a matrix; its i,j-th entry is the cumulative impact of field j's knowledge at time t on field i's knowledge output through time u

### Questions That Can Be Answered in Our Framework

The Economic Value of Science

With quantitative ways to help us quantify  $\Phi(u, t)$  ... we can answer

- ▶ If a country has \$ 1 extra dollar of R&D, how should it be allocated across different sectors?
- ▶ When technology shocks like AI change innovation networks in some potentially predictable ways, how much value can it unleash...

# **Concluding Remarks**

#### Conclusion

- ▶ We Ask: How can we seriously model knowledge spillovers in growth models?
  - Resource allocation and policy questions
  - Valuing scientific and technological progress (with assumptions)
- ► Open Questions and Next Steps:
  - ▶ Better understand the empirical properties of the science-technology network
  - ► Accouting for the contribution of science to growth
  - Connect to science policy and allocation of science funding
  - Understanding the role of firms and governments
  - **.**..

### Innovation Networks and R&D Allocation

Xugan ChenErnest LiuSong MaYalePrinceton & NBERYale & NBER

Spring 2025