Price Discrimination, Backhaul Problems, and Trade Costs: Theory and Evidence from E-commerce Delivery Chunmian Ge¹, Hanwei Huang², Chang Liu², Wenji Xu² ¹South China University of Technology, ²City University of Hong Kong

Highlight

We used a novel dataset from the largest logistics platform Cainiao. We found asymmetric pricing in both marginal price and fixed price. We developed a model to analyse optimal two-part pricing by logistics firms.

Background of E-commerce Delivery in China

Transportation cost is one of the most important components of trade cost, particularly for e-commerce trade. China has the world's largest market for e-commerce and e-commerce delivery.

Three Stylized Facts

- 1. Substantial imbalances in e-commerce deliveries between Chinese cities.
- 2. Significant asymmetries in the fixed and variable parts of delivery prices.
- 3. Price asymmetries vary with differences in city size and number of delivery firms.

Model the Transportation

Delivery firms face heterogeneous demands (Pareto distribution with α_i and $\underline{\theta}_i$). Due to the backhaul problem, the delivery firm's total cost function is

Fig. 1: Market Size and Concentration High market concentration in the e-commerce delivery \Rightarrow price discrimination Fig. 2: Parcel Throughput per City

Extremely uneven spatial distribution of e-commerce activity \Rightarrow backhaul problem

where c_{ij} is symmetric marginal cost and f_{ij} is fixed cost, and n_{ij} is number of delivery firms between city pairs.

 $c_{ij} \cdot \underline{-} \cdot \max(q_{ij}, q_{ji}) + f_{ij},$

The firm charges marginal price p_{ij} and fixed price F_{ij} to elicit seller types.

$$T_{ij}(q) = p_{ij}q + \mathbb{1}_{\{q>0\}}F_{ij}$$

Proposition and Collary

For any city pair (i, j), in equilibrium, $q_{ij} \neq q_{ji}$, the marginal price is

$$p_{ij} = \begin{cases} \frac{\underline{\theta}_i}{\alpha_i - 1} + c_{ij}, & \text{if } q_{ij} > q_{ji}, \\ \frac{\underline{\theta}_i}{\alpha_i - 1}, & \text{if } q_{ij} < q_{ji}, \end{cases}$$
(1)

and the fixed fee is

$$F_{ij} = \frac{(\underline{\theta}_i - p_{ij})^2}{2}.$$
(2)

Price asymmetries can be decomposed to two parts:

Fig. 3: Decomposition of Price Variation

Quantitatively, the backhaul problem primarily drives asymmetry in marginal prices across city pairs, while price discrimination mostly explains asymmetry in fixed fees.

Counterfactual: 10% Reduction in Marginal Shipping

Extension

Cost

Fig. 4: Counterfactual Effects across Routes No changes in below-capacity routes; significant variations in at-capacity routes. Fig. 5: Change in E-commerce Seller Surplus

Coastal and eastern cities gain more than western and hinterland cities. To estimate the backhaul problem's severity, we extend the baseline model with a parameter δ_{ij} to quantify it between city pairs.

The delivery firm's total cost function is revised to:

 $c_{ij} \cdot \frac{1}{n_{ij}} \cdot (\delta_{ij} \cdot 2 \max(q_{ij}, q_{ji}) + (1 - \delta_{ij})(q_{ij} + q_{ji})).$

Fig. 6: Estimated Average δ