Data-intensive Innovation and the State: Evidence from AI Firms in China

Martin Beraja David Yang Noam Yuchtman MIT Harvard LSE

ABFER webinar November 3, 2021

► Al innovation is **data-intensive**

Many recent AI advances made with decades-old algorithms applied to newly available big data

Al innovation is data-intensive

- Many recent AI advances made with decades-old algorithms applied to newly available big data
- Literature has focused on how data collected by private firms shapes Al innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)

Al innovation is data-intensive

- Many recent AI advances made with decades-old algorithms applied to newly available big data
- Literature has focused on how data collected by private firms shapes Al innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- Yet, throughout history, states have also collected massive quantities of data (Scott, 1998)
- The state has a large role in many areas

Public security, health care, education, basic science...

Al innovation is data-intensive

- Many recent AI advances made with decades-old algorithms applied to newly available big data
- Literature has focused on how data collected by private firms shapes Al innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- Yet, throughout history, states have also collected massive quantities of data (Scott, 1998)
- The state has a large role in many areas
 - Public security, health care, education, basic science...

 \implies Government data can exceed privately-collected data in magnitude/scope; or lack good substitutes altogether

Motivation: China's facial recognition AI sector

A common way in which Al firms gain access to valuable government data is by providing services to the state

Motivation: China's facial recognition AI sector

- A common way in which Al firms gain access to valuable government data is by providing services to the state
- Think about facial recognition AI firms in China...
 - ▶ Train algorithms with, e.g., video streams of faces from many angles
 - The state's public security units collect this form of data through their surveillance apparatus, and contract AI firms for services
 - Al firms gaining access to surveillance data can use it to train algorithms and develop software

This paper

Does access to **government data** when providing AI services to the state stimulate **commercial** AI innovation?

This paper

Does access to **government data** when providing AI services to the state stimulate **commercial** AI innovation?

The mechanism(s)

- 1. If gov't data and algorithms are **sharable** across uses, they can be used to develop AI products for commercial markets (e.g., a facial recognition platform for retail stores)
- 2. Firms may learn to manage and utilize large datasets too

 \implies a procurement contract with access to gov't data can fuel commercial innovation, overcoming crowd-out from the contract

This paper

Does access to **government data** when providing AI services to the state stimulate **commercial** AI innovation?

The mechanism(s)

- If gov't data and algorithms are sharable across uses, they can be used to develop AI products for commercial markets (e.g., a facial recognition platform for retail stores)
- 2. Firms may learn to manage and utilize large datasets too

 \implies a procurement contract with access to gov't data can fuel commercial innovation, overcoming crowd-out from the contract

Evidence of this in China's facial recognition AI sector

Two implications

- 1. Access to gov't data contributed to Chinese firms' emergence as leading innovators in facial recognition Al
 - Indeed, this has coincided with the expansion of the government's procurement of AI and surveillance capacity

Two implications

- 1. Access to gov't data contributed to Chinese firms' emergence as leading innovators in facial recognition Al
 - Indeed, this has coincided with the expansion of the government's procurement of AI and surveillance capacity

2. Novel role for the state in data-intensive economies

- So far, emphasis on the regulation of privately-collected data due to antitrust or privacy concerns (Tirole, 2020; Aridor et al., 2020)
- Al procurement and policies of gov't data collection and provision could, whether intentionally or not, stimulate and shape the direction of innovation in a range of sectors

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Data challenges

- 1. Dataset linking AI firms to govt. contracts did not exist
- 2. Dataset on AI firms' software did not exist (our measure of *product innovation*). Also, critical for us to classify by use (commercial or not)
- 3. No available direct measures of firm-level use of gov't data

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Data challenges

- 1. Dataset linking AI firms to govt. contracts did not exist
- 2. Dataset on AI firms' software did not exist (our measure of *product innovation*). Also, critical for us to classify by use (commercial or not)
- 3. No available direct measures of firm-level use of gov't data

Identification challenges

- 1. Non-random assignment of gov't contracts
- 2. Contracts work through other mechanisms unrelated to data

Data 1: linking AI firms to govt. contracts

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
 - Include: (*i*) firms specialized in facial recognition AI (e.g., Yitu); (*ii*) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (*iii*) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)

Data 1: linking AI firms to govt. contracts

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
 - Include: (*i*) firms specialized in facial recognition AI (e.g., Yitu); (*ii*) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (*iii*) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)

Data 1: linking AI firms to govt. contracts

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
 - Include: (*i*) firms specialized in facial recognition AI (e.g., Yitu); (*ii*) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (*iii*) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government buyers to Al suppliers

Data 2: AI firms' software production

Registered with Min. of Industry and Information Technology

- Validation exercise: check against IPO Prospectus of MegVii

Data 2: AI firms' software production

Registered with Min. of Industry and Information Technology

- Validation exercise: check against IPO Prospectus of MegVii

Categorize by intended customers:

- 1. Commercial: e.g., visual recognition system for smart retail;
- 2. **Government:** e.g., *smart city real time monitoring system on main traffic routes*;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

Categorization: analyze text using machine learning

Recurrent Neural Network (RNN) model using tensorflow

- Corpus: 13,000 manually labeled software programs
- Word-embedding: converted sentences to vectors based on word frequencies and used the words from full datasets as dictionary
- Long Short-Term Memory (LSTM) algorithm: 2 layers of 32 nodes
- 90% of corpus for training, 10% for validating
- 10,000 training cycles are run for gradient descent on loss function

Results robust to perturbing parameters of learning model

Within AI public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-AI contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- 3. Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

Baseline empirical strategy

Triple diffs: compare cumulative software releases before and after firms received 1st data-rich contracts, relative to the data-scarce ones

$$y_{it} = \sum_{T} \beta_{1T} T_{it} Data_i + \sum_{T} \beta_{2T} T_{it} + \alpha_t + \gamma_i + \sum_{T} \beta_{3T} T_{it} X_i + \epsilon_{it}$$

- *T_{it}*: 1 if, at time *t*, *T* semi-years have passed before/since firm *i* received 1st contract
- *Data*_i: 1 if firm *i* receives "data rich" contract (i.e., from "high" camera capacity prefecture at time of contract receipt)
- X_i controls for pre-contract firm characteristics: age, size (cap), and software production

Public security contract "richer in data" & firm innovation

Commercial use cumulative software releases

Public security contract "richer in data" & firm innovation

Commercial use cumulative software releases

Magnitude: 2 new software products over 3 years (20% of pre-contract software)

Public security contract "richer in data" & firm innovation Commercial use cumulative software releases

Government use cumulative software releases

Commercial innovation overcomes crowd-out of inputs by gov't

Evaluating alternative hypotheses

- 1. Selection at a given time differs by contract
 - No differential pre-contract levels/trends of software
 - Control for time-varying effects of proxies for firms' underlying productivity: index constructed from establishment year, pre-contract capitalization, pre-contract rounds of external financing, pre-contract software production

Evaluating alternative hypotheses

- 1. Selection at a given time differs by contract
 - No differential pre-contract levels/trends of software
 - Control for time-varying effects of proxies for firms' underlying productivity: index constructed from establishment year, pre-contract capitalization, pre-contract rounds of external financing, pre-contract software production

2. Productive benefits other than data differ by contract

- Value of contract; tasks of contract; market access: we control for time-varying effects of an index of non-data contract characteristics (dollar value; prefecture income; tasks coded using NLP)
- Signaling value: examine second contracts within parent firms
- Political value: drop Beijing/Shanghai contracts; drop firms receiving contracts in home province

Evaluating alternative hypotheses

- 1. Selection at a given time differs by contract
 - No differential pre-contract levels/trends of software
 - Control for time-varying effects of proxies for firms' underlying productivity: index constructed from establishment year, pre-contract capitalization, pre-contract rounds of external financing, pre-contract software production

2. Productive benefits other than data differ by contract

- Value of contract; tasks of contract; market access: we control for time-varying effects of an index of non-data contract characteristics (dollar value; prefecture income; tasks coded using NLP)
- Signaling value: examine second contracts within parent firms
- Political value: drop Beijing/Shanghai contracts; drop firms receiving contracts in home province

Additional evidence for our mechanism(s)

Data-complementary software (e.g., storage/transmission) differentially increases after data-rich contract (learning); but, accounting for pre-contract data-complementary software does not greatly affect our findings (sharable data and algorithms)

Contributions to literature

- 1. To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of **government data** in shaping commercial AI innovation, and the **sharability of data/algorithms** within the firm

Contributions to literature

- 1. To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of **government data** in shaping commercial AI innovation, and the **sharability of data/algorithms** within the firm
- 2. To the literature on industrial and innovation policies (e.g., Rodrik, 2007; Lane, 2020; Bloom et al., 2019)
 - Government data provision to firms can act as an innovation policy, whether intentionally or not
 - Mechanisms **similar** to other government policies (e.g., learning spillovers from space exploration) but **distinct** too (direct effect of sharability)

Contributions to literature

- 1. To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of **government data** in shaping commercial Al innovation, and the **sharability of data/algorithms** within the firm
- 2. To the literature on industrial and innovation policies (e.g., Rodrik, 2007; Lane, 2020; Bloom et al., 2019)
 - Government data provision to firms can act as an innovation policy, whether intentionally or not
 - Mechanisms **similar** to other government policies (e.g., learning spillovers from space exploration) but **distinct** too (direct effect of sharability)
- 3. To the literature on the rise of China emphasizing the role of the state (e.g., Lau et al., 2000; Brandt and Rawski, 2008; Song et al., 2011)
 - Highlight the role of the surveillance apparatus in commercial innovation
 - Next project: Al-tocracy. Alignment between innovation and autocracy? Contrasts with e.g., North (1991); Acemoglu and Robinson (2006, 2012)

China's export of AI

Dominate global trade (> 50%), different from other frontier tech

export_x

China's export of AI

High number of autocratic destinations

export_x

US's export of AI

Much fewer links, higher share of democratic destinations

export_x