Merger Analysis in the App Economy: An Empirical Model of Ad-Sponsored media

Kohei Kawaguchi Toshifumi Kuroda Susumu Sato

HKUST, Tokyo Keizai University, Hitotsubashi University

December 1 ABFER Webinar Series

Motivation

• Antitrust/regulation issues in the app economy:

- Google's acquisition of YouTube;
- Facebook's acquisition of WhatsApp;
- FTC v. Facebook;
- Epic Games v. Apple/Google.
- Challenge: co-existence of multiple business models
 - Paid apps;
 - Free ad-sponsored apps;
 - Combination of paid/ad monetization.
- Difficulty in traditional (=price-based) antitrust analysis

 \rightarrow rooms for misguided policies.

- How can we estimate demand/supply parameters of an imperfect competition of ad-sponsored media where multiple monetization policies co-exist?
- How can we conduct the usual merger analysis including relevant market definition and merger simulation?
- How can we analyze issues such as the effect of changing transaction fee imposed by the marketplace on welfare?

- Develop an empirical model of ad-sponsored media:
 - Consider consumers with budget and time constraints.
 - App developers <u>compete in utility</u> through price and advertisement setting.
 - Introduce well-defined notion of consumer's "cost" for using an app.
- Establish an estimator based on available data about Google Play in Japan.
- Using the estimated model, conduct an SSNIC test, run merger simulation, and study the effect of transaction fee.

Results

- Estimates:
 - Disutility from ads is 5-6% of the app's advertising revenue.
 - Game apps are more segmented by categories than non-game apps.
- Market definition:
 - Some game categories constitute relevant market. ex Action, Puzzle, and Role Playing games.
- Merger simulation:
 - Only the mergers within relevant markets have large impact on welfare.
- Transaction fees:
 - Reduction in fees can *increase* prices and reduce ads, especially for non-game apps.

- For each market *t*:
 - A set of apps j.
 - A set of app developers d.
 - A mass of consumers.
- A developer of app *j*:
 - sets the download price F_j , and
 - advertising intensity *a_j*.
- Consumer *i*:
 - downloads at most one app j, and
 - choose the usage time q_j of downloaded app.
- Consider a static pure-strategy Nash equilibrium.

Consumer's problem

The indirect utility from downloading app j:

$$u_{ij} := \mathbf{S}_j + \beta'_{di} X_{dj} - \alpha_y \mathbf{F}_j + \xi_{dj} + \underbrace{\varepsilon_{ij}}_{\text{TIEV}}$$

The usage surplus is:

$$S_j = \max_{q_j} V_j$$
,

where

$$v_j := \kappa \left[\left(eta'_{uj} X_{uj} - oldsymbol{lpha}_{oldsymbol{a}} oldsymbol{a}_j - oldsymbol{lpha}_y w + \xi_{uj}
ight) q_j - rac{\eta}{2} q_j^2
ight].$$

- With this specification,
 - usage time q_j and
 - download share s_j

are analytically solved.

• The per-app profit:

$$\pi_j := s_j imes \left\{ (1-
ho) F_j + q_j (a_j r - \lambda) - \epsilon_j
ight\}$$

• The total profit of app developer d:

$$\Pi_d := \sum_{j \in \{d' \text{s apps}\}} \pi_j.$$

- Each developer chooses (a_j, F_j) of the owned apps to maximizes the total profit, with non-negativity constraints $a_j \ge 0$, $F_j \ge 0$.
- The *free apps* and *ad-free* apps are captured by a corner solution.

Competition in utility

- The mean utility is sufficient statistics of price and advertisement for consumers.
- The assumption of no random coefficient in price and the usage-related utility is crucial for this.
- The per-app profit can be expressed as

$$\pi_j(\delta) := s_j(\delta) imes ar{\pi}_j(\delta_j),$$

- δ_j is mean utility from app j;
- $\bar{\pi}_j(\delta_j)$ is maximal per-consumer profit to achieve δ_j .
- Developer's problem is then to choose $\{\delta_j\}$ to maximize

$$\Pi_d := \sum_{j \in \{d' \text{s apps}\}} \pi_j(\delta)$$

Define the cost for using an app j

Cj :=
$$\delta_j^0 - \delta_j$$
,

δ_j⁰: mean utility achieved by zero price/ads.
 δ_j: actual mean utility.

- Under price competition, $c_i = \alpha_v F_i$.
- Thus, the notion of cost generalizes the notion of price.
- This notion is used for market definition.

Platform: Google Play.

- Selection of apps:
 - For game/non-game apps and each business model (free/ad, paid/ad-free, paid/ad).
 - Select apps based on the # of times that ranked above a certain threshold on the download and usage ranking.
- Period: March 2015 to January 2017.

Shares of business models for each product category (Application)

Category	Ν	Paid/Ad sponsored	Paid/Ad free	Free/Ad sponsored
Comics	1171	0.693	0.081	0.225
Communication	1296	0.255	0.275	0.470
Education	1988	0.082	0.508	0.409
Entertainment	1375	0.255	0.131	0.615
Lifestyle	1113	0.092	0.081	0.827
Music and Audio	3238	0.148	0.311	0.540
News and Magazines	4191	0.026	0.072	0.902
Personalization	646	0.173	0.115	0.712
Photography	1853	0.131	0.107	0.761
Productivity	1204	0.098	0.425	0.477
Social	1649	0.534	0.136	0.329
Tools	2241	0.124	0.007	0.869
Video Players	1612	0.093	0.223	0.684
Total	23577	0.175	0.188	0.637

Key identification assumption

- We do not observe ad intensity a_j .
- Usually, we identify marginal costs from the (i) observed price and (ii) price optimality condition.
- In this paper, we elicit equilibrium advertising from the advertising optimality condition:
 - under the assumption that the marginal cost for showing advertising is zero.
- Justification: ad-technology.
 - cf. newspapers, TVs.

Key identification assumption

- Price optimality condition cannot point-identify marginal costs of *free apps*
- Some extrapolation is necessary.
- We try to identify the distribution of the costs of free apps by assuming that free/paid versions of a pair of sibling apps has the same marginal costs.
- Some bias may exist because the apps that have free/paid version may not represent free apps.

Table: Estimation results of demand non-linear parameters

Parameter	Application	Game
$lpha_y$	0.0194	0.000856
α_a	0.479	0.0233
η	0.01	0.0105
ĸ	7.94	52.5

Table: Implied advertisement disutility

Application	Game
24.7	27.2

SSNIC test

- Market definition uses SSNIP test:
 - Small but
 - Significant and
 - Non-transitory
 - Increase in
 - price
- SSNIP test considers how the profit of a hypothetical monopolist that owns a set of apps changes after 5% increase in prices.
- The set of apps forms the market if the profit increases.
- Because we cannot use a SSNIP test for free apps, we use SSNIC test.

Table: SSNIC test for categories

Category	Profit change (%)	Category	Profit change (%)
Comics	-6.192	Action	8.496
Communication	-12.957	Adventure	-0.031
Education	-0.618	Card	-0.046
Entertainment	-4.131	Casino	0.103
Lifestyle	-0.105	Casual	0.346
Music and Audio	-0.168	Puzzle	2.944
News and Magazines	-0.438	Role Playing	10.869
Personalization	-0.743	Simulation	0.276
Photography	-0.177	Sports	-1.806
Productivity	-0.2	Strategy	-0.012
Social	-2.18	(b) Game	
Tools	0.01		
Video Players	-0.188		

(a) Application

• Welfare effects of mergers are large only for categories that form relevant markets.

Category	Consumer surplus	Profit app	Profit platform	Total surplus
Action	0.971	1.16	1.06	0.99
Adventure	1	1	1	1
Card	1	1	1	1
Casino	1	1	1	1
Casual	0.999	1.01	1.01	1
Others	1	1	1	1
Puzzle	0.95	1.23	1.12	0.98
Role Playing	0.916	1.42	1.24	0.971
Simulation	0.999	1.01	1.01	1
Sports	1	1	0.999	1
Strategy	1	1	1	1

- What happens if the transaction fee is reduced?
- Price may *increase* through 2 channels.
 - Shift from ad revenue to price revenue.
 Special feature of proportional fee.
- Therefore, the impact of transaction fees on prices is theoretically ambiguous.

Transaction fees: endogenous variables

20 / 23

Transaction fees: surplus/application

Transaction fees: surplus/game

22 / 23

Conclusion

- Our model allows for co-existence of business models and enables the usual merger analysis including market definition and merger simulation.
- Some categories of game apps form a relevant market, whereas none of non-game categories form relevant markets.
- Merger simulation shows that a merger in a app category has a large welfare impact only when it forms a relevant market.
- A reduction in transaction fees can increase the price, especially for non-game apps.

- Why the profit function can be translated into a function of delta. What's intuition? Which assumptions are crucial for this to work?
 - In the model, the mean utility of delta is sufficient statistics for a consumer. Therefore, the interaction with consumers and competitors works only through delta.
 - We can calculate the optimal combination of price and advertisement given a value of delta, and consider a game in which the action is to choose delta and the payoff is the profit evaluated at the optimal price and advertisement given the value of delta.
 - The assumption of no random coefficient in the usage-related utility is crucial for this.

• What is the special feature of proportional fee?

 Proportional fee inflates the scale of marginal costs relative to price. Therefore, when marginal costs are positive, proportional fees increase prices. However, when firms obtain ad revenues, the perceived marginal costs of apps can be negative. In this case, the scale of negative marginal costs increases with proportional fees, and price can decrease with proportional fees.

- What if you allow for the market power on the advertiser side?
 - Theoretically, we would expect that new "sea-saw" effects would arise. When mergers hurt consumers by increasing advertisements, they tend to benefit advertisers by lowering advertising prices.
- Can you incorporate a versioning strategy such as IAP and freemium?
 - Our current setting does not allow to incorporate consumer heterogeneity in usage-related utilities. Theoretically, the competition-in-utility approach becomes infeasible. Empirically, we need to jointly elicit usage-related unobserved fixed effects and download-related fixed effects, which is hard. Moreover, to identify consumer heterogeneity at this level, consumer-level data will be required.

- Can you consider the Google-play's other strategies such as anti-steering clauses?
 - No, because we do not observe the app's activities outside Android.
- Aren't there other strategic variables of app developers such as data collection?
 - Of course yes, but currently we do not observe the data on app's data collection. Thus, we gave up analyzing these strategies. If the revenue from such a strategy exists, they will be captured as a negative marginal cost.
- Shouldn't you take quality choices such as upgrade into account?
 - Of course yes. Our setting should be viewed as a static benchmark.